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The Rubin causal model using propensity weights (revisited)

I The Rubin causal model[1] is a 2–stage process for estimating
treatment effects, adjusting for confounders.

I In Stage 1 (“Design”), we find a propensity model in the data on
treatment and confounders, predicting treatment from
confounders.

I This model is used to compute inverse treatment–propensity
weights, which can be used to directly standardize the sample to
a fantasy target population, with a real–world distribution of
confounders, in which treatment is independent of confounders.

I In Stage 2 (“Analysis”), we bring in the outcome data, and
estimate the mean treated–control difference in that fantasy
target population, using the inverse treatment–propensity weights
to standardize.
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Example: Maternal smoking and birth weight in the cattaneo2 data

I An example from the cattaneo2 data appears in Newson and
Falcaro (2023)[2], and in the example do–file for this
presentation.

I Observations are 4642 pregnancies.
I The outcome is birthweight in grams. The “treatment” (or

exposure) mbsmoke is self–reported maternal smoking,
I And there are 17 confounding covariates (mostly health– or

wealth–related), entered into a logit propensity model to predict
maternal smoking and to derive average treatment effect (ATE)
weights.

I We checked these weights for balance and variance inflation,
using the SSC packages somersd[3] and haif, respectively.

I In the analysis phase, we used the ATE weights in a regression
model to estimate mean smoking effect on birthweight (which
was negative).

Balance and variance inflation checks for completeness–propensity weights Frame 3 of 17



Example: Maternal smoking and birth weight in the cattaneo2 data

I An example from the cattaneo2 data appears in Newson and
Falcaro (2023)[2], and in the example do–file for this
presentation.

I Observations are 4642 pregnancies.
I The outcome is birthweight in grams. The “treatment” (or

exposure) mbsmoke is self–reported maternal smoking,
I And there are 17 confounding covariates (mostly health– or

wealth–related), entered into a logit propensity model to predict
maternal smoking and to derive average treatment effect (ATE)
weights.

I We checked these weights for balance and variance inflation,
using the SSC packages somersd[3] and haif, respectively.

I In the analysis phase, we used the ATE weights in a regression
model to estimate mean smoking effect on birthweight (which
was negative).

Balance and variance inflation checks for completeness–propensity weights Frame 3 of 17



Example: Maternal smoking and birth weight in the cattaneo2 data

I An example from the cattaneo2 data appears in Newson and
Falcaro (2023)[2], and in the example do–file for this
presentation.

I Observations are 4642 pregnancies.
I The outcome is birthweight in grams. The “treatment” (or

exposure) mbsmoke is self–reported maternal smoking,
I And there are 17 confounding covariates (mostly health– or

wealth–related), entered into a logit propensity model to predict
maternal smoking and to derive average treatment effect (ATE)
weights.

I We checked these weights for balance and variance inflation,
using the SSC packages somersd[3] and haif, respectively.

I In the analysis phase, we used the ATE weights in a regression
model to estimate mean smoking effect on birthweight (which
was negative).

Balance and variance inflation checks for completeness–propensity weights Frame 3 of 17



Example: Maternal smoking and birth weight in the cattaneo2 data

I An example from the cattaneo2 data appears in Newson and
Falcaro (2023)[2], and in the example do–file for this
presentation.

I Observations are 4642 pregnancies.
I The outcome is birthweight in grams. The “treatment” (or

exposure) mbsmoke is self–reported maternal smoking,
I And there are 17 confounding covariates (mostly health– or

wealth–related), entered into a logit propensity model to predict
maternal smoking and to derive average treatment effect (ATE)
weights.

I We checked these weights for balance and variance inflation,
using the SSC packages somersd[3] and haif, respectively.

I In the analysis phase, we used the ATE weights in a regression
model to estimate mean smoking effect on birthweight (which
was negative).

Balance and variance inflation checks for completeness–propensity weights Frame 3 of 17



Example: Maternal smoking and birth weight in the cattaneo2 data

I An example from the cattaneo2 data appears in Newson and
Falcaro (2023)[2], and in the example do–file for this
presentation.

I Observations are 4642 pregnancies.
I The outcome is birthweight in grams. The “treatment” (or

exposure) mbsmoke is self–reported maternal smoking,
I And there are 17 confounding covariates (mostly health– or

wealth–related), entered into a logit propensity model to predict
maternal smoking and to derive average treatment effect (ATE)
weights.

I We checked these weights for balance and variance inflation,
using the SSC packages somersd[3] and haif, respectively.

I In the analysis phase, we used the ATE weights in a regression
model to estimate mean smoking effect on birthweight (which
was negative).

Balance and variance inflation checks for completeness–propensity weights Frame 3 of 17



Example: Maternal smoking and birth weight in the cattaneo2 data

I An example from the cattaneo2 data appears in Newson and
Falcaro (2023)[2], and in the example do–file for this
presentation.

I Observations are 4642 pregnancies.
I The outcome is birthweight in grams. The “treatment” (or

exposure) mbsmoke is self–reported maternal smoking,
I And there are 17 confounding covariates (mostly health– or

wealth–related), entered into a logit propensity model to predict
maternal smoking and to derive average treatment effect (ATE)
weights.

I We checked these weights for balance and variance inflation,
using the SSC packages somersd[3] and haif, respectively.

I In the analysis phase, we used the ATE weights in a regression
model to estimate mean smoking effect on birthweight (which
was negative).

Balance and variance inflation checks for completeness–propensity weights Frame 3 of 17



Example: Maternal smoking and birth weight in the cattaneo2 data

I An example from the cattaneo2 data appears in Newson and
Falcaro (2023)[2], and in the example do–file for this
presentation.

I Observations are 4642 pregnancies.
I The outcome is birthweight in grams. The “treatment” (or

exposure) mbsmoke is self–reported maternal smoking,
I And there are 17 confounding covariates (mostly health– or

wealth–related), entered into a logit propensity model to predict
maternal smoking and to derive average treatment effect (ATE)
weights.

I We checked these weights for balance and variance inflation,
using the SSC packages somersd[3] and haif, respectively.

I In the analysis phase, we used the ATE weights in a regression
model to estimate mean smoking effect on birthweight (which
was negative).

Balance and variance inflation checks for completeness–propensity weights Frame 3 of 17



Inverse completeness–propensity weights

I Inverse completeness–propensity weights are sometimes known
simply as inverse–probability weights[4].

I They are sometimes used to correct for the presence of
incomplete observations, with missing values for one or more
important variables.

I For instance, in a randomized controlled trial, some randomized
subjects may have missing values for the primary outcome
designated in the protocol.

I A possible remedy might be to weight the surviving subjects
inversely proportionally to their predicted probability of
completeness, or completeness–propensity, given a list of
baseline variables that are always complete.

I This procedure might (we hope) directly standardize the results
observed in the complete subjects to the total set of randomized
subjects.
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Example: the Positional Therapy for Positional Obstructive Sleep Apnoea
(POSA) trial

I This multi–center trial[5] was organized jointly between the
Royal Brompton Hospital, Imperial College London, and Oxford
Respiratory Trials Unit.

I It was intended to test the usefulness, in patients with a sleep
apnoea problem, of a proprietary device (Night Shift™),
strapped around the neck at night, which alerts patients by
vibrational feedback if they attempt to sleep in a supine position.

I The primary outcome was an apnoea–hyperpnoea index (AHI),
expressed as a mean number of apnoeic breathing (snoring)
events per hour, and measured at baseline and after 3 months.

I Patients were randomized to a working device (with vibrational
feedback, 59 subjects) or a sham device (set to monitoring only,
61 subjects).

I Unfortunately, following an unforeseen pandemic, the primary
outcome was only available at baseline and 3 months for 45
intervention and 47 control subjects!
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The model for the primary estimand
This was a multi–factorial model, regressing 3–month AHI with
respect to baseline AHI and randomization age group. The analysis
was “treble–blind”, so treatment groups were labelled “Group 1”
(actually working device) and “Group 2” (actually sham device). The
parameters were:
I A Group 2 effect (expressed in AHI units of events per hour).

compared to a reference level of Group 1. This was the primary
estimand.

I A randomization age group effect for 65+ years (in AHI units),
compared to a reference level of <65 years.

I A linear effect of baseline AHI (in units per unit).
I A constant term (in AHI units), representing the mean AHI for a

Group 1 subject aged <65 years with a mean baseline AHI of
15.245.

So, the primary estimand was a difference between 3–month AHI
event rate in sham–device patients and 3–month AHI event rate in
working–device patients, other things being equal.
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The per–protocol analysis for the primary estimand
The regression model for 3–month AHI with respect to group
(treatment group), randagp (randomization age group), and ybase
(baseline AHI) gave the following results:

Source | SS df MS Number of obs = 92
-------------+---------------------------------- F(3, 88) = 9.98

Model | 1959.49338 3 653.164459 Prob > F = 0.0000
Residual | 5759.09489 88 65.4442601 R-squared = 0.2539

-------------+---------------------------------- Adj R-squared = 0.2284
Total | 7718.58826 91 84.8196512 Root MSE = 8.0898

------------------------------------------------------------------------------
E~AHI_E4_C48 | Coefficient Std. err. t P>|t| [95% conf. interval]
-------------+----------------------------------------------------------------

group |
Group 2 | 4.413558 1.687882 2.61 0.011 1.059247 7.767869

|
randagp |

65+ | .635988 2.013702 0.32 0.753 -3.365821 4.637797
ybase | .4601508 .0945316 4.87 0.000 .2722892 .6480125
_cons | 8.254424 1.286945 6.41 0.000 5.696891 10.81196

------------------------------------------------------------------------------

We see that the Group 2 effect was 4.414 events (95% CI, 1.059 to
7.768 events; P=0.011). However, this was based on 92 patients, a
little over 3/4 of the 120 that we originally randomized! And how
representative were these 92 patients?
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Post hoc sensitivity analysis: completeness–propensity model
I We decided to do this before breaking the blind.
I We found in the data a logit completeness–propensity model,

regressing AHI completeness both at baseline and at 3 months
with respect to 10 baseline covariates: female gender, ex–smoker
status, current smoker status, missing smoking status, Group 2
membership, randomization age in years (centered at 60),
randomization age missingness, GP visits in previous month,
sick days in previous month, sick days missingness.
(Missingness indicators are allowed in propensity models[6].)

I We computed completeness–propensity scores and ATE weights
for complete and incomplete patients, using the same formula for
AHI completeness as for maternal smoking status in the
cattaneo2 data earlier.

I We then did balance and variance–inflation checks for the
completeness–propensity model.

I Finally, we re–ran the regression model on the complete patients,
using the ATE weights as pweights.
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Balance checks for completeness–propensity scores
I These are necessary, as weights that do not balance are not

balancing weights.
I However, they are different from balance checks for

treatment–propensity scores, as we are comparing a subset (the
completes) with the full sample, not two exclusive treatment
groups with each other.

I To compare the completes with the full sample, we should use
the SSC package scsomersd, which compares 2 scenarios
(versions of the same dataset), called “Scenario 0” and
“Scenario 1”.

I “Scenario 0” might be the completes, weighted either equally or
by inverse completeness–propensity weights.

I “Scenario 1” might be the whole sample (complete or
incomplete), weighted equally.

I And we might compare either a propensity score or a component
covariate between scenarios.
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Estimating the unweighted Somers’ D of completeness–propensity with
respect to completeness using scsomersd

We assume that variables ahipres, cpropscor, and cpropwt contain
AHI completeness, completeness propensity, and completeness propensity
weight, respectively. We compute the unweighted Somers’ D of
completeness–propensity with respect to completeness, with “Scenario 0”
specified as the unweighted completes by [pweight=ahipres], and
“Scenario 1” specified as the unweighted full sample by sweight(1):
. scsomersd cpropscor [pweight=ahipres], sweight(1) tdist;
Von Mises Somers’ D with variable: _scen0
Transformation: Untransformed
Valid observations: 212
Number of clusters: 120
Degrees of freedom: 119

Symmetric 95% CI
(Std. err. adjusted for 120 clusters in _obs)

------------------------------------------------------------------------------
| Jackknife

_scen0 | Coefficient std. err. t P>|t| [95% conf. interval]
-------------+----------------------------------------------------------------

_yvar | .102808 .0335109 3.07 0.003 .036453 .169163
------------------------------------------------------------------------------

The unweighted Somers D of propensity with respect to completeness is
0.103. This means that, if we sample one random patient from the completes
and one from the full sample, then it is 10.3% more likely for the more
completeness–prone to be the first than to be the second.
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Estimating the propensity–weighted Somers’ D of
completeness–propensity with respect to completeness using scsomersd

This time, we compute the weighted Somers’ D of completeness–propensity
with respect to completeness, with “Scenario 0” specified as the
propensity–weighted completes by [pweight=ahipres*cpropwt],
and “Scenario 1” specified as the unweighted full sample by sweight(1):

. scsomersd cpropscor [pweight=ahipres*cpropwt], sweight(1) tdist;
Von Mises Somers’ D with variable: _scen0
Transformation: Untransformed
Valid observations: 212
Number of clusters: 120
Degrees of freedom: 119

Symmetric 95% CI
(Std. err. adjusted for 120 clusters in _obs)

------------------------------------------------------------------------------
| Jackknife

_scen0 | Coefficient std. err. t P>|t| [95% conf. interval]
-------------+----------------------------------------------------------------

_yvar | .0345057 .0362212 0.95 0.343 -.037216 .1062273
------------------------------------------------------------------------------

The weighted Somers’ D of propensity with respect to completeness is
0.035. So, if we sample a random patient from the completes, with
probability inversely proportional to propensity, and one equiprobably from
the full sample, then it is 3.5% more likely for the more completeness–prone
patient to be the first than to be the second.
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Unweighted and propensity–weighted Somers’ D of completeness
predictors with respect to completeness

I These predictors
include the propensity
score and its
component covariates.

I The unweighted
values show that older
and/or less diseased
patients are more
likely to be
AHI–complete.

I And the
propensity–weighted
values show that these
associations are mostly
removed by propensity
weighting.
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Post–post–hoc caution: A minor non–overlap problem!

I Of the 120 patients
randomized, 8 have
completeness–
propensity less than
0.5 (5 in Group 1, 3 in
Group 2).

I And all 8 of these are
incomplete!

I We should therefore
probably view our
inverse–propensity
weights as
standardizing only to
the remaining 112
patients. (Which is the
best we can do.)
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Variance–inflation checks using the SSC package haif

These are a bit different from variance inflation checks for
treatment–propensity weights, as this time they are restricted to the 92
AHI–complete patients:
. haif ib1.group ib1.randagp ybase if ahipres, pweight(cpropwt);
Number of observations: 92
Homoskedastic adjustment inflation factors
for variances and standard errors:

Variance SE
1b.group . .
2.group 1.019749 1.009826

1b.randagp . .
2.randagp 1.007883 1.003934

ybase 1.010497 1.005235
_cons 1.021375 1.010631

The rows represent model parameters for the per–protocol model for
3–month AHI, with respect to group (treatment group), randagp
(randomization age group), and ybase (baseline AHI), now
weighted by inverse completeness–propensity weights. We see that
very little variance or standard–error inflation is expected, even if the
completeness predictors have absolutely no effect on the outcome.
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The completeness–propensity weighted analysis for the primary estimand
The regression model for 3–month AHI with respect to group
(treatment group), randagp (randomization age group), and ybase
(baseline AHI) gave the following output:
(sum of wgt is 115.7552886306068)

Linear regression Number of obs = 92
F(3, 88) = 7.12
Prob > F = 0.0002
R-squared = 0.2462
Root MSE = 8.1676

------------------------------------------------------------------------------
| Robust

E~AHI_E4_C48 | Coefficient std. err. t P>|t| [95% conf. interval]
-------------+----------------------------------------------------------------

group |
Group 2 | 4.153327 1.722201 2.41 0.018 .7308137 7.57584

|
randagp |

65+ | .5245646 1.888545 0.28 0.782 -3.228522 4.277651
ybase | .4697795 .1173178 4.00 0.000 .2366351 .702924
_cons | 8.469091 1.274587 6.64 0.000 5.936118 11.00206

------------------------------------------------------------------------------

We see that the Group 2 effect was 4.153 events (95% CI, 0.731 to
7.576 events; P=0.018). This is reassuringly similar to the
per–protocol estimate of 4.414 events (95% CI, 1.059 to 7.768 events;
P=0.011).
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POSA post hoc sensitivity analysis: Summary
I In the design phase, we found a model to predict AHI

completeness from baseline patient features in the 120
randomized patients.

I We used this model to define inverse completeness–propensity
weights for the 92 complete patients, hoping to standardize the
distribution of baseline features to the 120 randomized patients.

I Balance checks showed that these weights removed most (but
not quite all) of the imbalance, as 8 incomplete patients had very
low completeness propensity, and could therefore not be
represented by up–weighting comparable complete patients.

I However, the weights were not expected to inflate the variance of
the primary estimand very much.

I And, proceeding to the analysis phase, we found the effect
estimate to be reassuringly similar to the per–protocol estimate.

I And, even more reassuringly, when we broke the blind, we found
that the treatment group with the better outcome (“Group 1”)
was the intervention!

Balance and variance inflation checks for completeness–propensity weights Frame 16 of 17



POSA post hoc sensitivity analysis: Summary
I In the design phase, we found a model to predict AHI

completeness from baseline patient features in the 120
randomized patients.

I We used this model to define inverse completeness–propensity
weights for the 92 complete patients, hoping to standardize the
distribution of baseline features to the 120 randomized patients.

I Balance checks showed that these weights removed most (but
not quite all) of the imbalance, as 8 incomplete patients had very
low completeness propensity, and could therefore not be
represented by up–weighting comparable complete patients.

I However, the weights were not expected to inflate the variance of
the primary estimand very much.

I And, proceeding to the analysis phase, we found the effect
estimate to be reassuringly similar to the per–protocol estimate.

I And, even more reassuringly, when we broke the blind, we found
that the treatment group with the better outcome (“Group 1”)
was the intervention!

Balance and variance inflation checks for completeness–propensity weights Frame 16 of 17



POSA post hoc sensitivity analysis: Summary
I In the design phase, we found a model to predict AHI

completeness from baseline patient features in the 120
randomized patients.

I We used this model to define inverse completeness–propensity
weights for the 92 complete patients, hoping to standardize the
distribution of baseline features to the 120 randomized patients.

I Balance checks showed that these weights removed most (but
not quite all) of the imbalance, as 8 incomplete patients had very
low completeness propensity, and could therefore not be
represented by up–weighting comparable complete patients.

I However, the weights were not expected to inflate the variance of
the primary estimand very much.

I And, proceeding to the analysis phase, we found the effect
estimate to be reassuringly similar to the per–protocol estimate.

I And, even more reassuringly, when we broke the blind, we found
that the treatment group with the better outcome (“Group 1”)
was the intervention!

Balance and variance inflation checks for completeness–propensity weights Frame 16 of 17



POSA post hoc sensitivity analysis: Summary
I In the design phase, we found a model to predict AHI

completeness from baseline patient features in the 120
randomized patients.

I We used this model to define inverse completeness–propensity
weights for the 92 complete patients, hoping to standardize the
distribution of baseline features to the 120 randomized patients.

I Balance checks showed that these weights removed most (but
not quite all) of the imbalance, as 8 incomplete patients had very
low completeness propensity, and could therefore not be
represented by up–weighting comparable complete patients.

I However, the weights were not expected to inflate the variance of
the primary estimand very much.

I And, proceeding to the analysis phase, we found the effect
estimate to be reassuringly similar to the per–protocol estimate.

I And, even more reassuringly, when we broke the blind, we found
that the treatment group with the better outcome (“Group 1”)
was the intervention!

Balance and variance inflation checks for completeness–propensity weights Frame 16 of 17



POSA post hoc sensitivity analysis: Summary
I In the design phase, we found a model to predict AHI

completeness from baseline patient features in the 120
randomized patients.

I We used this model to define inverse completeness–propensity
weights for the 92 complete patients, hoping to standardize the
distribution of baseline features to the 120 randomized patients.

I Balance checks showed that these weights removed most (but
not quite all) of the imbalance, as 8 incomplete patients had very
low completeness propensity, and could therefore not be
represented by up–weighting comparable complete patients.

I However, the weights were not expected to inflate the variance of
the primary estimand very much.

I And, proceeding to the analysis phase, we found the effect
estimate to be reassuringly similar to the per–protocol estimate.

I And, even more reassuringly, when we broke the blind, we found
that the treatment group with the better outcome (“Group 1”)
was the intervention!

Balance and variance inflation checks for completeness–propensity weights Frame 16 of 17



POSA post hoc sensitivity analysis: Summary
I In the design phase, we found a model to predict AHI

completeness from baseline patient features in the 120
randomized patients.

I We used this model to define inverse completeness–propensity
weights for the 92 complete patients, hoping to standardize the
distribution of baseline features to the 120 randomized patients.

I Balance checks showed that these weights removed most (but
not quite all) of the imbalance, as 8 incomplete patients had very
low completeness propensity, and could therefore not be
represented by up–weighting comparable complete patients.

I However, the weights were not expected to inflate the variance of
the primary estimand very much.

I And, proceeding to the analysis phase, we found the effect
estimate to be reassuringly similar to the per–protocol estimate.

I And, even more reassuringly, when we broke the blind, we found
that the treatment group with the better outcome (“Group 1”)
was the intervention!

Balance and variance inflation checks for completeness–propensity weights Frame 16 of 17



POSA post hoc sensitivity analysis: Summary
I In the design phase, we found a model to predict AHI

completeness from baseline patient features in the 120
randomized patients.

I We used this model to define inverse completeness–propensity
weights for the 92 complete patients, hoping to standardize the
distribution of baseline features to the 120 randomized patients.

I Balance checks showed that these weights removed most (but
not quite all) of the imbalance, as 8 incomplete patients had very
low completeness propensity, and could therefore not be
represented by up–weighting comparable complete patients.

I However, the weights were not expected to inflate the variance of
the primary estimand very much.

I And, proceeding to the analysis phase, we found the effect
estimate to be reassuringly similar to the per–protocol estimate.

I And, even more reassuringly, when we broke the blind, we found
that the treatment group with the better outcome (“Group 1”)
was the intervention!

Balance and variance inflation checks for completeness–propensity weights Frame 16 of 17



References

[1] Rubin, D. B. 2008. For objective causal inference, design trumps analysis. The Annals of
Applied Statistics 2(3): 808–840.

[2] Newson, R. B. and Falcaro, M. 2023. Robit regression in Stata. The Stata Journal 23(3):
658–682.

[3] Newson, R. B. 2016. The role of Somers’ D in propensity modelling. Presented at the
22nd UK Stata User Meeting, 8—9 September, 2016. Downloadable from the conference
website at https://ideas.repec.org/p/boc/usug16/01.html

[4] Seaman, S. R. and White, I. R. 2011. Review of inverse probability weighting for dealing
with missing data. Statistical Methods in Medical Research 22: 278–295.

[5] ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000
Feb 29 –. Identifier NCT04153240, The POSA Trial – Positional Therapy for Positional
OSA (POSA); 2023 March 30 [cited 19 January 2024]; [about 4 screens]. Available from:
https://clinicaltrials.gov/study/NCT04153240 .

[6] Rosenbaum, P. R. and Rubin, D. B. 1984. Reducing Bias in Observational Studies Using
Subclassification on the Propensity Score. Journal of the American Statistical Association
79 (387): 516–524.

The presentation, and the example do–files, can be downloaded from
the conference website. The packages can be downloaded from SSC.
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