
Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

On the shoulders of giants: Writing wrapper commands in Stata

Sebastian Kripfganz

� University of Exeter Business School, Department of Economics, Exeter, UK
� www.kripfganz.de 7 @Kripfganz

29th London Stata Conference
September 7, 2023

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 1/41

https://www.kripfganz.de
https://twitter.com/Kripfganz

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

On the shoulders of giants

At the 2017 UK Stata Users Group Meeting, Nicholas Cox gave a talk entitled
On the shoulders of giants, or not reinventing the wheel

in which he presented a collection of (little known) commands that help reducing
coding work. Many of those commands make a user’s or programmer’s life easier
by

1 providing a simplified syntax for a specific task, which is eventually performed under
the hood by more powerful commands;

2 extending the functionality of existing commands, and thus removing the need to
resort on cumbersome workarounds.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 2/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Wrapper commands

Defining characteristics of a wrapper subroutine (command or function):

Definition
A wrapper is a subroutine whose main purpose it is to call another subroutine. The
wrapper extends this other subroutine or makes it easier to use, without
reimplementing its functionality.

Wrappers can wrap around other wrappers in a hierarchical way.
Often, the main purpose of the higher-layer wrappers is syntax parsing (plus some
checks and data preparation tasks). Every layer translates the initially simple syntax
into the more general syntax of the lower-layer command. The user only needs to be
concerned with the basic syntax of the top-layer command.

Wrappers facilitate the use of tailored (one-line) command lines, and thus avoid
the repeated implementation of cumbersome (error-prone) tasks.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 3/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Wrapper commands

Leading use cases for wrapper commands:
1 Commands that perform a specific task as a special case of a more general

procedure:
Many estimators for specific models are special cases of maximum-likelihood or
generalized method-of-moments estimators. Wrapper commands translate relatively
simple syntax into the more complex syntax of the flexible ml or gmm commands, or
they directly wrap around Mata’s optimize() or moptimize() functions.
Essentially any (community-contributed) command which implements specific types
of graphs is a wrapper around the flexible graph twoway; see the dataviz packages of
Asjad Naqvi, among others.

2 Commands that extend the functionality of an existing command:
For example, the community-contributed tsegen command (Robert Picard and
Nicholas Cox, 2015, SSC) extends egen to accommodate time series variable lists.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 4/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Example: mixed-effects estimation

Many official commands can be regarded as wrapper commands, and often there
is a hierarchical structure.
For example, this applies to most me commands for mixed-effects estimation:

1 melogit parses the user inputs for the specific regression model and translates them
into the general meglm syntax.

2 meglm processes the syntax and then wraps around the undocumented
me estimate.

3 me estimate performs further checks and translates the syntax into the format
required by gsem.

4 gsem prepares the maximum-likelihood estimation with ml.
5 Since Stata 11, ml just passes through all input to the undocumented mopt.
6 mopt sets up the numerical optimization with Mata’s moptimize() function.
7 The results are then passed back up the hierarchy, and eventually melogit wraps

around the undocumented me display, which displays the estimation output.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 5/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Example: spatial data visualization

The grmap command for drawing maps to visualize spatial data is another
interesting example:

1 The only purpose (besides a few additional checks) of grmap is to call the
undocumented g spmap, which is essentially identical to the community-contributed
spmap command (Maurizio Pisati, 2007, SSC).

2 g spmap (or spmap) translate the input into the general graph twoway syntax,
which displays the graph.

The community-contributed geoplot (Ben Jann, 2023, SSC) provides even more
flexibility for drawing maps. It, too, wraps around graph twoway.
bimap (Asjad Naqvi, 2022, SSC) extends the functionality of spmap, and thus is
an example of one community-contributed command wrapping around another
community-contributed command.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 6/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Plugins

Commands can wrap around subroutines written in different programming
languages:

Compiled C (or C++) code can be linked to Stata code through a plugin; see
https://www.stata.com/plugins/. The main purpose is to speed up execution
time or to avoid reinventing the wheel by wrapping around already existing code.
Much of Stata’s low-level functionality is essentially implemented this way.
The python command allows to include third-party Python packages.
The community-contributed rcall package (E.F. Haghish, 2019, Stata Journal) and
rsource package (Roger Newson, 2007, SSC) enable language interfacing with R.
With some creativity, subroutines written in other languages can be called as well.

For example, the community-contributed boottest command (David Roodman,
Morten Nielsen, James MacKinnon, and Matthew Webb, 2019, Stata Journal)
connects to a Julia back-end through Python.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 7/41

https://www.stata.com/plugins/

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Wrapper structure: r-class program

Commands performing general tasks (other than estimation) are typically r-class
commands. A wrapper might call another r-class command, the wrappee, and
return the received results with or without amendment:
program define wrapper, rclass

version 18
... // syntax processing and other preliminary tasks
quietly wrappee ... // call to lower-layer command (e.g., summarize)
return add // add wrappee results to results returned by wrapper
... // potential amendments or additions to the results
... // display of results in desired format
return scalar answer = 42 // add or change returned scalars, matrices, or locals

end
wrapper ...
return list // display list of returned results
display r(answer)

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 8/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Wrapper structure: e-class program

Estimation commands are e-class commands. If a wrapper calls another e-class
command, the estimation results can be passed through automatically:
program define wrapper, eclass

version 18
... // syntax processing and other preliminary tasks
wrappee ... // call to the lower-layer command (e.g., regress)
... // potential amendments or additions to the results
ereturn local cmd "wrapper" // add or change returned results
ereturn local cmdline ‘"wrapper ‘0’"’

end
wrapper ...
ereturn list // display list of returned results
matrix list e(b)

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 9/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Wrapper structure: e-class program
Alternatively, the estimation results can be processed further
program define wrapper, eclass

version 18
... // syntax processing and other preliminary tasks
quietly wrappee ... // call to the lower-layer command (e.g., regress)
... // potential amendments or additions to the results
ereturn post ... // return coefficient vector and variance-covariance matrix
ereturn local cmd "wrapper" // return further results
ereturn local cmdline ‘"wrapper ‘0’"’
ereturn display // display coefficient table

end
wrapper ...

Note that ereturn post clears all estimation results returned by wrappee. Any
relevant result needs to be processed and returned separately.
Alternatively, ereturn repost just amends the coefficient vector and
variance-covariance matrix without clearing the other estimation results.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 10/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Version control

Wrapping around other subroutines creates package dependencies. Changes in
syntax and functionality of lower-layer wrappees may potentially break the code of
higher-layer wrappers or lead to different results than under previous versions.

For official Stata commands, this is typically not a concern (from the user
perspective) due to the strong emphasis on backward compatibility. Occasionally,
there are more substantial changes to syntax, functionality, or the way results are
reported, but version control with the version command ensures that old code
continues to work as originally intended.
Version control does not ensure exact reproducibility of previous results if a
command is updated to fix a bug.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 11/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Version control

At the beginning of a program within an ado-file, a version statement should be
included, e.g.
program define wrapper

version 12.1
...

end

This ensures that (official) commands are interpreted as they were in the specified
Stata version.
It does not preclude the use of new functionality introduced in later Stata versions,
but extra precaution is needed.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 12/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Version control: system constants

The version statement sets the minimum Stata version requirement for any user
of the program; i.e., c(stata version) ≥ c(version), where

c(stata version) is the version of Stata under which the code is running.
c(version) is the version set by the program’s version statement.

This still allows users to call the program from a do-file (or interactively) run
under version control for an earlier version; i.e. c(userversion) < c(version),
where

c(userversion) is the “user version” set in the user’s do-file.
Similarly, the program can be called from another program with a version
statement referring to an earlier version; i.e. caller() < c(version), where

caller() is the version of the program or session invoking the current program.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 13/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Version control: system constants

Consider the program wrapper called under version control (interactively or from
a do-file), where wrapper calls another program wrappee, both written for
different Stata versions:
program define wrapper

version 17
wrappee

end
program define wrappee

version 11
...

end
version 13: wrapper

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 14/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Version control: system constants

Within wrapper, the system constants return the following values:
c(stata version) = 18, the version of Stata that is running.
c(version) = 17, as set by the version statement within wrapper.
c(userversion) = 13, as set by the user when calling wrapper.
caller() = 13, as set by the user when calling wrapper.

Within wrappee, they return the following values:
c(stata version) = 18, the version of Stata that is running.
c(version) = 11, as set by the version statement within wrappee.
c(userversion) = 13, as set by the user when calling wrapper.
caller() = 17, as set by wrapper when calling wrappee.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 15/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Version control: system constants

Official Stata commands normally rely on caller() to determine the relevant
version under which a command shall be run.
For major Stata improvements that are intended to benefit all programs
irrespective of the version statement, and which do not affect syntax or stored
results, Stata checks c(userversion) instead of caller().

Unless a user explicitly runs a command under version control (in a do-file or
interactively), the improvement will also benefit any program written for an earlier
version before the improvement was implemented.
For example, the faster sort algorithm introduced in version 17 generally also
benefits the wrappee program written for version 11. However, this is not the case
here, if the user invoked version 13.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 16/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Quizzes & Grumbles

Stata 15 introduced a major change regarding the naming convention for free
parameters in fitted models, with an effect on row and column names in e(b) and
e(V). Consider the following example:
program define wrapper

version 17
melogit ‘0’ // melogit is the wrappee

end
webuse bangladesh
version 13: wrapper c_use urban age children || district: , nolog

Does this code return e(b) and e(V) results equivalent to one of the following?
1 version 13: melogit c use urban age children || district: , nolog
2 version 17: melogit c use urban age children || district: , nolog

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 17/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Quizzes & Grumbles
Neither; Stata’s melogit (or some command further down in the hierarchy) gets
confused by the different versions in c(userversion) and caller():
(some output omitted)
invalid matrix stripe;
/:var(cons[district])

Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7

Wald chi2(5) = 125.36
Log likelihood = -1222.0022 Prob > chi2 = 0.0000
--

c_use | Coefficient Std. err. z P>|z| [95% conf. interval]
-------------+--

c1 | .7222158 .1183964 6.10 0.000 .4901631 .9542684
c2 | -.0307946 .0078383 -3.93 0.000 -.0461574 -.0154318
c3 | .4201486 .0576332 7.29 0.000 .3071897 .5331076
c4 | -1.432882 .1362 -10.52 0.000 -1.699829 -1.165935
c5 | .2189028 .0736679 .1131865 .4233585

--
LR test vs. logistic model: chibar2(01) = 45.05 Prob >= chibar2 = 0.0000

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 18/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Version control: system constants

If it is important for wrappee (in the previous example: melogit) to know under
which version wrapper was called, wrapper can be modified as follows:
program define wrapper

local vv : display "version " string(_caller()) ":"
version 17
‘vv’ wrappee

end

This is how hierarchical official Stata commands are typically set up.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 19/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Quizzes & Grumbles

Another major change came with Stata 14, when the 32-bit KISS random-number
generator (RNG) was replaced by the 64-bit Mersenne Twister RNG. Consider:
program define wrapper

version 17
version 13: {

set seed ‘0’
display rnormal()

}
end
version 18: wrapper 20230907

Which random-number generator is invoked here?
1 32-bit KISS
2 64-bit Mersenne Twister

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 20/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Quizzes & Grumbles

The relevant variant of the random-number generator is determined based on
c(userversion), not caller(). The version statements within wrapper are
simply ignored. Here, a seed is set for the new 64-bit Mersenne Twister RNG.
To force usage of the old 32-bit Kiss RNG, the user option needs to be specified
in the version prefix:
program define wrapper

version 17
version 13, user: {

set seed ‘0’
display rnormal()

}
end
version 18: wrapper 20230907

There is hardly any relevant case for a programmer to set the user version.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 21/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Quizzes & Grumbles

Some care may be needed to ensure that set seed and rnormal() (or any other
random-number function) are called under the same user version. The following
example yields non-reproducible results:
program define wrapper

version 17
version 13, user: set seed ‘0’
display rnormal()

end
version 18: wrapper 20230907

The seed is set under user version control for the old 32-bit Kiss RNG, while
rnormal() obtains a random draw under the new 64-bit Mersenne Twister RNG, for
which a seed has not been set here.
Technical note: rnormal kiss32() always uses the old RNG, while
rnormal mt64() always uses the new RNG, but the seed still needs to be set under
the appropriate user version.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 22/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Version control: system constants

Unless the command intends to mimic the behavior of official commands under
certain Stata versions, c(userversion) is not of much use for programmers of
community-contributed commands.
c(stata version) can be used to utilize new features (e.g., frames introduced in
Stata 16), while keeping the program accessible under older versions:
program define wrapper

version 13
if c(stata_version) >= 16 {

... // code using new Stata functionality (frames)
}
else {

... // workaround using old functionality (preserve, restore)
}

end

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 23/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Version control: system constants

caller() could still be useful in a community-contributed command to preserve
old behavior if an update to the command introduces code-breaking changes:
program define wrapper

version 13
if _caller() >= 18 {

wrapper_v18 ‘0’ // new code (fork to version 18 subroutine)
}
else {

wrapper_v13 ‘0’ // old code (fork to version 13 subroutine)
}

end

This way, any do-file or program with a version statement prior to Stata 18 (but at
least version 13) will continue to run. However, the improvement will only be
available to users with the latest Stata version. Moreover, do-files will still break if
they were written since the release of Stata 18 but before the code-breaking update.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 24/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Version control for Mata functions

For Mata functions, version control is achieved with a Stata version statement at
the beginning of the do-file (mata-file), in which the Mata function is declared:
version 12.1
mata:
function myfcn() {

...
}
end

Mata functions can be either compiled at run time or distributed with the package
in compiled form (as a mo-file or together with other functions in an mlib-library).
Crucially, a compiled Mata function/library cannot be used in older Stata versions.
The Mata functions need to be compiled in the oldest Stata version that shall be
supported by the package, or the source code must be supplied and compiled by
the user at run time.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 25/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Version control for Mata functions

It is challenging to write packages that are supported by older Stata versions while
utilizing official Mata functions introduced in later versions.

Compilers in old Stata versions do not know the functions introduced in later
versions.
If the source code is provided, any reference to the not yet supported function must
be shielded in a function that is never called at run time by the old Stata version.
c(stata version) can be used to determine the relevant functions for compilation
at run time.
If Mata libraries are provided, different libraries need to be distributed for different
Stata versions, which requires careful version management. For a discussion of
potential solutions, see
https://www.statalist.org/forums/forum/general-stata-discussion/mata/
1319628-making-mata-libraries-for-multiple-stata-versions-gracefully

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 26/41

https://www.statalist.org/forums/forum/general-stata-discussion/mata/1319628-making-mata-libraries-for-multiple-stata-versions-gracefully
https://www.statalist.org/forums/forum/general-stata-discussion/mata/1319628-making-mata-libraries-for-multiple-stata-versions-gracefully

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Version control for community-contributed packages
There is no common version control standard for community-contributed
packages:

Some authors return a version statement in the returned results after running the
command; e.g., e(version) in xtabond2 (David Roodman, 2009, Stata Journal).
Some commands have a version option for displaying the package version; e.g.,
ivreg2 (C. F. Baum, M. E. Schaffer, and S. Stillman, 2003, 2007, Stata Journal),
reghdfe (Sergio Correia, 2014, SSC, prior to version 6), and xtdcce2 (Jan Ditzen,
2018, 2021, Stata Journal).
The moremata package (Benn Jann, 2005, SSC) contains a Mata function
mm version() which returns the version number.
It is a convention (although not a requirement) to specify a package version number
in the first line of an ado-file:
*! version 1.0.0 07sep2023 Sebastian Kripfganz
At the 2023 Stata Conference in Stanford, Sergio Correia (with Matthew Seay)
presented the community-contributed require package, which extracts the version
number from this “starbang” line and thus can be used to assert that a certain
(minimum) package version is installed.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 27/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Version control for community-contributed packages

When wrapping around community-contributed commands, version control can be
implemented in a case-specific way if supported by the wrappee, especially if both
the wrapper and the wrappee are developed by the same programmer.
Unless community programmers are similarly careful as StataCorp’s developers in
ensuring backward compatiblity, guards are needed against potential
code-breaking changes from updates to the wrappee.

Requiring a specific version of the wrappee is not a solution, because users typically
only have access to the latest version.
Most updates to community-contributed packages are beneficial (bug fixes, new
functionality, performance improvements, etc.) or at least harmless.
However, it cannot be taken for granted that wrappee updates will remain
compatible with the wrapper code. Eventually, it is unavoidable to monitor whether
community-contributed wrappees are still compatible with the wrapper code, and to
make adjustments when necessary.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 28/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Package dependencies

If the wrappee is another community-contributed package, the wrapper needs to
assert that the package is installed. If necessary and possible, the correct version
needs to be asserted as well.
There are two possible approaches:

1 Ascertain the existence of the (required version of the) wrappee package before it is
used (ideally before running any other wrapper code):
capture which wrappee // check existence of a file in ado-path
capture findfile wrappee.txt // occasionally useful in specific cases

2 Capture any errors returned by the wrappee (or its nonexistence) when it is called:
capture wrappee ... // captured call of a Stata program
capture mata: wrappee() // captured call of a Mata function

The second approach is useful to guard against code-breaking wrappee updates. It
often makes sense to combine both approaches.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 29/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Package dependencies

capture can also be used for blocks of code:
capture {

...
}

capture avoids that the code execution stops with an uninformative error
message. If the wrappee is not found or returns an error message when called,
capture returns a nonzero return code that needs to be processed subsequently:
if _rc != 0 {

local rc = _rc
... // potentially needed cleanup code
exit ‘rc’ // any appropriate return code can be used here

}

The reaction can be tailored to the specific return code.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 30/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Package dependencies
Example from the first few code lines of geoplot (Ben Jann, 2023, SSC):
capt which colorpalette
if _rc==1 exit _rc
local rc_colorpalette = _rc

capt findfile lcolrspace.mlib
if _rc==1 exit _rc
local rc_colrspace = _rc

capt mata: assert(mm_version()>=200)
if _rc==1 exit _rc
local rc_moremata = _rc

if ‘rc_colorpalette’ | ‘rc_colrspace’ | ‘rc_moremata’ {
if ‘rc_colorpalette’ {

di as err "{bf:colorpalette} is required; " _c
di as err "type {stata ssc install palettes, replace}"

}
if ‘rc_colrspace’ {

di as err "{bf:colrspace} is required; " _c
di as err "type {stata ssc install colrspace, replace}"

}
if ‘rc_moremata’ {

di as err "{bf:moremata} version 2.0.0 or newer is required; " _c
di as err "type {stata ssc install moremata, replace}"

}
exit 499

}

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 31/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Package update guidelines

Avoid code-breaking changes as far as possible;
If new functionality changes the behavior of a command option, introduce a new
option with different name, but keep the (now undocumented) old option for
backward compatibility.
If you change the way you return results in r() or e(), keep returning previous
results as hidden/historical results.

If code-breaking changes are unavoidable, use Stata version control to call old
code under old Stata versions. Ideally, try to time the release of a code-breaking
update with the release of a new Stata version.
In the case of substantial code-breaking changes, consider releasing the new
version under a different package name.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 32/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Wishes & Grumbles

Community-driven initiatives for version control are a way forward, but not an
ultimate solution.

require is quite flexible, but it just creates another package dependency by itself.
It would be desirable if StataCorp was recommending a version control standard
for community-contributed packages and provide official tools (akin to require)
for version checking.
It would also be useful if there were more frequent Stata version increments: 18.0,
18.1, 18.2, . . .

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 33/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Example 1: spxtivdfreg

Vasilis Sarafidis and I recently released an update to our xtivdfreg package
(2021, Stata Journal) for the instrumental-variables estimation of large-T panel
data models with common factors.
The new version contains the command spxtivdfreg, which adds functionality
for the estimation of spatial panel data models:

yit = αyi ,t−1 + ρ
N∑

j=1
wijyjt + ϕ

N∑
j=1

wijyj,t−1 + β′xit + δ′
N∑

j=1
wijxjt + uit

where wij are spatial weights collected in a spatial weights matrix W, and the
errors are assumed to have a common-factor structure:

uit = γ ′
y ,i fy ,t + εit

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 34/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Example 1: spxtivdfreg

spxtivdfreg is a wrapper for xtivdfreg:
spxtivdfreg has a few more options related to spatial model, but otherwise has the
same syntax as xtivdfreg.
spxtivdfreg parses the spatial options, loads the spatial weights matrix (from an
Excel or delimited text file, as a Stata or Mata matrix, or as an spmatrix object),
carries out related checks, and creates temporary variables for spatial lags.
spxtivdfreg then calls xtivdfreg to perform the estimation.
Normally, the wrapper would need to process the output of the wrappee and display
the results in the appropriate form. Here, I took a shortcut by adding a small
subroutine to xtivdfreg, which amends the results table if called by spxtivdfreg.
The dedicated spxtivdfreg postestimation command estat impact can
subsequently be used to compute short-run and long-run average direct, indirect,
and total impacts (as well as corresponding Delta-method standard errors), which
are typically the objects of interest when estimating spatial autoregressive models.

net install xtivdfreg, from(http://www.kripfganz.de/stata/)

help spxtivdfreg
Sebastian Kripfganz (2023) Writing wrapper commands in Stata 35/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Example 1: spxtivdfreg

The minimum Stata version required for spxtivdfreg is Stata 13.
Some options rely on new features introduced in later versions:

The option to import W from an external file requires at least Stata 14. For this
purpose, if c(stata version) ≥ 16, frames are used instead of
preserve/restore.
To load W as an spmatrix object, using Stata’s official sp tools, at least Stata 15
is required.
Option std for the factor extraction from standardized variables requires at least
Stata 16.1 with c(born date) ≥ 30jun2020.

In earlier Stata versions, the command can still be used but with reduced
functionality.
To absorb fixed effects, xtivdfreg requires reghdfe (Sergio Correia, 2014,
SSC), which itself requires ftools (Sergio Correia, 2016, SSC).

Problems due to missing packages or incompatible versions are caught with capture.
Version control between spxtivdfreg and xtivdfreg is not an issue because
both commands are distributed as part of the same package.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 36/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Example 1: spxtivdfreg

. spxtivdfreg NPL INEFF CAR SIZE BUFFER PROFIT QUALITY LIQUIDITY, ///
> absorb(ID) splag tlags(1) spmatrix("W.csv", import) std noheader ///
> iv(INTEREST CAR SIZE BUFFER PROFIT QUALITY LIQUIDITY, splags lag(1))

Defactored instrumental variables estimation
--

| Robust
NPL | Coefficient std. err. z P>|z| [95% conf. interval]

-------------+--
NPL |
L1. | .2898517 .0543794 5.33 0.000 .1832699 .3964334

|
INEFF | .4473766 .1045636 4.28 0.000 .2424357 .6523174

(some coefficients omitted)
-------------+--
W |

NPL | .394323 .0848855 4.65 0.000 .2279505 .5606955
-------------+--

sigma_f | .64162383 (std. dev. of factor error component)
sigma_e | .90381826 (std. dev. of idiosyncratic error component)

rho | .33509007 (fraction of variance due to factors)
--
Hansen test of the overidentifying restrictions chi2(19) = 18.8252
H0: overidentifying restrictions are valid Prob > chi2 = 0.4681

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 37/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Example 1: spxtivdfreg

. estat impact, sr

Short-run impacts
(output omitted)

. estat impact, lr

Long-run impacts
--

| Delta-method
| Impact std. err. z P>|z| [95% conf. interval]

-------------+--
direct |

INEFF | .6470571 .1593923 4.06 0.000 .3346539 .9594602
(some coefficients omitted)
-------------+--
indirect |

INEFF | .7694746 .3352843 2.29 0.022 .1123295 1.42662
(some coefficients omitted)
-------------+--
total |

INEFF | 1.416532 .4274884 3.31 0.001 .5786698 2.254393
(some coefficients omitted)
--

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 38/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Example 2: xtdpdgmmfe

My xtdpdgmm command (2017, SSC) for the generalized method of moments
estimation of linear dynamic panel data models has a fairly complicated syntax
due to the flexibility it provides.

Correctly specifying all the options requires a good understanding of the underlying
econometric theory.

The latest version of the package contains the command xtdpdgmmfe, which acts
as a wrapper for xtdpdgmm:

xtdpdgmmfe has a simplified (and hopefully more intuitive) syntax with slightly
reduced functionality. Users specify options in accordance with a set of assumptions
they make, which requires a less profound econometric background.
xtdpdgmmfe translates the inputs into the more complicated syntax of xtdpdgmm
and executes the latter. It also displays the respective xtdpdgmm command line and
stores it in e(cmdline), which might help users to understand (and possibly amend)
the latter’s syntax.

net install xtdpdgmm, from(http://www.kripfganz.de/stata/)

help xtdpdgmmfe
Sebastian Kripfganz (2023) Writing wrapper commands in Stata 39/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Example 2: xtdpdgmmfe

. xtdpdgmmfe n w k, predetermined(w) exogenous(k) stationary collapse curtail(4) twostep vce(robust) nofooter noheader

xtdpdgmm L(0/1).n w k , model(difference) gmmiv(k, lagrange(0 .)) gmmiv(k, lagrange(0 0) difference model(level))
> gmmiv(L.n w, lagrange(1 .)) gmmiv(L.n w, lagrange(0 0) difference model(level)) collapse curtail(4) twostep vce(robust)
> nofooter noheader

Generalized method of moments estimation

Fitting full model:
Step 1 f(b) = .00375022
Step 2 f(b) = .1724788

(Std. err. adjusted for 140 clusters in id)
--

| WC-Robust
n | Coefficient std. err. z P>|z| [95% conf. interval]

-------------+--
n |

L1. | .4298095 .1159962 3.71 0.000 .2024612 .6571578
|

w | -1.228313 .209562 -5.86 0.000 -1.639047 -.8175787
k | .2739143 .0514984 5.32 0.000 .1729793 .3748493

_cons | 4.524447 .7540113 6.00 0.000 3.046612 6.002282
--

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 40/41

Introduction Wrapper Structure Version Control Example: spxtivdfreg Example: xtdpdgmmfe Conclusion

Conclusion: wrapper commands in Stata

It is not difficult to write a wrapper command in Stata. In fact, most commands
can be seen as wrappers, often with a hierarchical wrapping architecture.
Managing package dependencies and version control is challenging for
community-contributed packages, as there is no commonly accepted standard.
As a programmer, keep in mind that others might want to write a wrapper for
your command:

Return all relevant results in r() or e().
As far as possible, retain backward compatibility.

Sebastian Kripfganz (2023) Writing wrapper commands in Stata 41/41

	Introduction
	Definition
	Examples
	Plugins

	Wrapper Structure
	Version Control
	Backward Compatibility
	System Constants
	Mata Functions
	Package Dependencies

	Example: spxtivdfreg
	Example: xtdpdgmmfe
	Conclusion

