

Power and Sample Size by Simulation

Alex Asher

Senior Biostatistician and Software Developer StataCorp LLC

2025 UK Stata Conference

Outline

- Power and Sample Size Concepts
 - Null and alternative hypotheses
 - Critical values, alpha levels, power, effect size
- Power and Sample Size Using Stata
 - Built-in power methods
 - Power by simulation
 - Sample size by simulation
- Group Sequential Designs
 - Introduction to GSDs
 - Simulation-based GSDs

Research Question

image: Journal of Pharmacology & Clinical Research, licensed under CC BY 4.0

- Does our novel chemotherapy shrink tumors?
- Outcome: Tumor Shrinkage Rate (TSR)

$$TSR = (D_b - D_a)/(D_b \times t) \times 100\%$$

 D_b is the longest diameter of the tumor before treatment D_a is the longest diameter after treatment

t is the time elapsed in days

Null and alternative hypotheses

- H_0 : TSR = 0, H_a : TSR > 0
- Conduct a z-test with known SD

• Test statistic
$$z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

• x_i = observed TSR for participant i μ_0 = TSR under H_0 σ = standard deviation (known) n = sample size

Critical Value and Alpha Level

Distribution Under the Alternative

Distribution of z Assuming the Null ($\mu=\mu_0$) and Alternative ($\mu=\mu_A$) Hypotheses

Critical Value and Power

Alpha Level and Power

- Alpha Level:
 - The probability of rejecting the null hypothesis assuming that the <u>null hypothesis is true</u>.

- Statistical Power:
 - The probability of rejecting the null hypothesis assuming that the <u>alternative hypothesis is true</u>.

Solve for Power

- User must specify:
 - Alpha
 - One-sided or two-sided
 - Often 0.05 or 0.01 for two-sided tests
 - We will conduct an upper one-sided test at the 0.025 level
 - Sample size
 - Often dictated by funding
 - We will use n=50
 - Effect size
 - Difference between hypothesized parameter values
 - Can be scaled or unscaled (specify SD if unscaled)
 - We will use $\delta=0.5$ and $\sigma=1$

Power calculation in Stata

Power calculation in Stata

. power onemean θ θ.5, n(50) alpha(θ.025) knownsd onesided

Estimated power for a one-sample mean test z test

H0: m = m0 versus Ha: m > m0

Study parameters:

alpha = 0.0250 N = 50 delta = 0.5000 m0 = 0.0000 ma = 0.5000 sd = 1.0000

Estimated power:

power = 0.9424

Power calculation by simulation

```
**# program onemeansim: one sample z-test (upper one-sided test)
program onemeansim, rclass
       version 19
       syntax, n(integer) /// Sample size
               [ alpha(real 0.025) /// Alpha level
                mO(real 0) /// Mean under the null
                ma(real 0.5) /// Mean under the alternative
       // Generate a normal random variable with mean = ma' and SD = 1
       quietly drawnorm y, n(`n') mean(`ma') sd(1) clear
       // Upper one-sided z-test
       ztest y == m0'
       return scalar reject = (r(p_u) < alpha')
end
```

Power calculation by simulation

```
. // Try it out
```

. set seed 9

. onemeansim, n(50)

One-sample z test

/ariable	0bs	Mean		Std. dev.	[95% conf	
У	50	.6792907	.1414214	1	.4021099	.9564715

mean = mean(y)

H0: mean = 0

Ha: mean < 0Pr(Z < Z) = 1.0000

Ha: mean != 0 Pr(|Z| > |z|) = 0.0000

Ha: mean > 0Pr(Z > z) = 0.0000

7 = 4.8033

Create a power usermethod command

```
**# program power_cmd_onemeansim: power by simulation
program power_cmd_onemeansim, rclass
       version 19
        syntax, n(integer) /// Sample size
                [ alpha(real 0.025) /// Alpha level
                 m0(real 0) /// Mean under the null ma(real 0.5) /// Mean under the alternative
                  reps(integer 100) /// Number of replicates
                  seed(numlist max=1) /// Random seed (no default seed)
       // Set seed, if specified
        if ("`seed'" != "") set seed `seed'
        // Simulate data and test the null hypothesis
        quietly simulate reject=r(reject), reps(`reps'): ///
                onemeansim, n(`n') m0(`m0') ma(`ma') alpha(`alpha')
        quietly summarize reject
       // Return results
        return scalar power = r(mean)
        return scalar N = n'
        return scalar alpha = `alpha'
        return scalar m0 = `m0'
        return scalar ma = `ma'
       return scalar delta = `ma' - `m0'
end
```

Run power onemeansim

- . // Start with N=50. Use 1000 reps for accuracy. Set seed for reproducibility.
- . power onemeansim, n(50) alpha(0.025) m0(0) ma(0.5) reps(1000) seed(9)

Estimated power Two-sided test <

alpha	power	N
. 025	. 938	50

MC Error

$$SE(power) = \sqrt{\frac{power*(1-power)}{reps}}$$

```
. // Calculate Monte Carlo error (standard error of power estimate)
. local SEpower = sqrt( r(power) * (1-r(power)) / 1000 )
. display "SE of power estimate: `SEpower'"
SE of power estimate: .007626008130077
```

Sample size calculation by simulation

- . // Option 1: provide a numlist of sample sizes
 . set seed 9 // Bonus question: Why don't we use option seed()?
- . power onemeansim, n(40(2)50) alpha(0.025) m0(0) ma(0.5) reps(5000) graph

Customize output with an initializer

```
**# program power_cmd_onemeansim_init: use initializer to customize output program power_cmd_onemeansim_init, sclass version 19 sreturn clear sreturn local pss_numopts "m0 ma" // Options allowing numlists sreturn local pss_colnames "m0 ma delta" // Columns to add to default table sreturn local pss_colgrsymbols "\mu{sub:0} \mu{sub:a} \delta" // Graph symbols sreturn local pss_title "by simulation for a one-sample z-test" sreturn local pss_subtitle "upper one-sided test" end
```


Customize output with an initializer

- . // Re-run with initializer
- . set seed 9
- . power onemeansim, n(40(2)50) alpha(0.025) m0(0) ma(0.5) reps(5000) graph table

Estimated power by simulation for a one-sample z-test upper one-sided test

alpha	power	N	mΘ	ma	delta
. 025	.8786	40	0	.5	. 5
. 025	.8998	42	0	. 5	. 5
. 025	.9184	44	Θ	. 5	. 5
. 025	.9262	46	0	. 5	. 5
. 025	.9334	48	0	. 5	. 5
. 025	. 9384	50	0	. 5	. 5

Estimated power by simulation for a one-sample z-test

Use power to calculate sample size by simulation

```
**# program power_cmd_onemeansampsize: simulation-based sample-size evaluator
program power_cmd_onemeansampsize, rclass
       version 19
       syntax, power(numlist >0 <1 max=1) /// Requested power
               [ alpha(real 0.05)  /// Alpha level
  m0(real 0)  /// Mean under the null
                 ma(real 0.5) /// Mean under the alternative
                startval(integer 100) /// Starting value for sample size
                 maxval(integer 1000)  /// Maximum value for sample size
minval(integer 1)  /// Minimum value for sample size
                 powtol(real 0.01) /// Tolerance for power search (default 1%)
                 biter(integer 100) /// Max iterations for bisection algorithm
                 nfractional /// Unused, but required by -gsdesign-
                                        /// Unused, but required by -gsdesign-
                 onesided
       // Set seed, if specified
       if ("'seed'" != "") set seed 'seed'
       // Test powtol() to ensure it's not set too low
       assert (`powtol' > 0)
```

Use power to calculate sample size by simulation (continued)

```
// Test maxval() to ensure it's not set too low
power_cmd_onemeansim, n(`maxval') alpha(`alpha') m0(`m0') ma(`ma') reps(`reps')
if (r(power) < `power') {</pre>
        di as error "error: {bf:maxval()} too small"
        exit 480
// Test -minval()- to ensure it's not set too high
power_cmd_onemeansim, n(`minval') alpha(`alpha') m0(`m0') ma(`ma') reps(`reps')
if (r(power) > `power') {
        di as error "error: {bf:minval()} too large"
        exit 480
// Compare requested power to power attained via simulation at the starting value
local thisN = `startval'
local lastN = .
power_cmd_onemeansim, n(`thisN') alpha(`alpha') m0(`m0') ma(`ma') reps(`reps')
local pdiff = r(power) - `power'
```

Use power to calculate sample size by simulation (continued)

```
// Repeat guess-n-check process using bisection algorithm
local i = 1
while (abs(`pdiff') > `powtol') {
        local ++i
        if ('i' > 'biter') {
                di as error "convergence not achieved"
                exit 430
        // Bisection algorithm
        local lastN = `thisN'
        if (`pdiff' > 0) { // Overpowered: decrease N
                local maxval = `thisN'
        else {
                         // Underpowered: increase N
                local minval = `thisN'
        local thisN = ceil((`maxval' + `minval') / 2)
        if (`thisN' == `lastN') { // Already converged
                continue, break
        power_cmd_onemeansim, n(`thisN') alpha(`alpha') m0(`m0') ma(`ma') reps(`reps')
        local pdiff = r(power) - `power'
```

Use power to calculate sample size by simulation (continued)

```
// Return results
return scalar power = r(power)
return scalar N = `thisN'
return scalar alpha = `alpha'
return scalar m0 = `m0'
return scalar ma = `ma'
return scalar delta = `ma' - `m0'
return local direction = "upper" ←
```

Customize output with an initializer

Calculate sample size by simulation

```
. // Try it as a -power- command
. power onemeansampsize, power(0.9) alpha(0.025) m0(0) ma(0.5) startval(100) reps(500) seed(9)
```

Estimated sample size by simulation for a one-sample z-test upper one-sided test

alpha	power	N	mΘ	ma	delta
. 025	.896	39	0	. 5	. 5

Fixed Sample Design vs Group Sequential Design

or: how I learned to stop worrying and accept the null

Fixed Sample Design vs Group Sequential Design

or: how I learned to stop worrying and accept the null

GSD in action

From https://youtu.be/hO2qW1NLrMk?si=gXsB8zDkAmq9K2IE by Meghan Cain, StataCorp

gsdesign **syntax**

gsdesign method ... [, designopts boundopts]

where *method* ... refers to a power *method* that is used for sample-size calculation, *designopts* are options controlling the sample-size calculation, and *boundopts* are options controlling the calculation of the stopping boundaries.

method	Description	
onemean	GSD for one-sample mean test	
twomeans	GSD for two-sample means test	
oneproportion	GSD for one-sample proportion test	
twoproportions	GSD for two-sample proportions test	
logrank	GSD for a log-rank test	
usermethod	user-defined sample-size calculation	

gsdesign supports the above methods when they are used to calculate sample size with simple random sampling. To use an unsupported method, specify option methodok.

gsdesign syntax (continued)

designopts	Description
Main	
methodopts	method-specific options
<u>a</u> lpha(#)	overall significance level for all tests; default is alpha(0.05)
power(#)	overall power for all tests; default is power(0.8)
<u>b</u> eta(#)	overall probability of type II error for all tests; default is beta(0.2)
<u>onesid</u> ed	request a one-sided test; default is two-sided
<u>nfrac</u> tional	report fractional sample size
force	allow calculation with unsupported methodopts
methodok	allow calculation with unsupported <i>method</i>
<pre>poweriteration(powiteropts)</pre>	iteration options for the calculation of fixed-study sample size; not available with <i>method</i> logrank; seldom used

GSD by simulation

```
. gsdesign onemeansampsize, power(0.9) alpha(0.025) m0(0) ma(0.5) startval(50) reps(500) seed(9) ///
                            onesided nlooks(4) efficacy(errobfleming) graphbounds
Group sequential design by simulation for a one-sample z-test
upper one-sided test
Efficacy: Error-spending O'Brien-Fleming style
Study parameters:
      alpha = 0.0250 (upper one-sided)
     power = 0.9000
        m\Theta = 0.0000
        ma = 0.5000
     delta = 0.5000
Expected sample size:
        H0 = 41.89
        Ha = 32.14
Info. ratio = 1.0183
   N fixed =
                  41
     N \max = 42
Fixed-study crit. value = 1.9600
```

GSD by simulation (continued)

Critical values, p-values, and sample sizes for a group sequential design

	Info. Efficacy			Sample size
Look	frac.	Upper	p-value	N
1	0.25	4.3326	0.0000	11
2	0.50	2.9631	0.0015	21
3	0.75	2.3590	0.0092	32
4	1.00	2.0141	0.0220	42

Notes: Critical values are for z statistics; otherwise, use p-value boundaries.
Requested information fraction not attained.

Group sequential design for a onemeansampsize test

Parameters: $\alpha = .025$ (one-sided), $\mu_0 = 0$, $\mu_a = .5$, $\delta = .5$, $1-\beta = .9$

GSD with futility bounds

Group sequential design by simulation for a one-sample z-test upper one-sided test

Efficacy: Error-spending O'Brien-Fleming style

Futility: Error-spending Hwang-Shih-de Cani, nonbinding, gamma = -4.0000

Group sequential design for a onemeansampsize test

Error-spending O'Brien-Fleming-style efficacy Error-spending Hwang-Shih-de Cani nonbinding futility 3.5-3. Stop for efficacy (reject H₀) 2.5 Stop for futility (accept H₀) z-value Continue .5-Efficacy Futility Fixed-study critical value 0 --.5 15 35

Parameters: $\alpha = .025$ (one-sided), $\mu_0 = 0$, $\mu_a = .5$, $\delta = .5$, $1-\beta = .9$, $\gamma_1 = -4$

Sample size

STATA (19)

Code from all slides available upon request aasher@stata.com