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CONSTRUCTION OF GENERALIZED
RESIDUALS



GENERALISED LINEAR MODELS

• Model: yi = f(xi, β) + εi

• Residuals: yi − ŷi(β̂)
• Usually scale is not identified, but

• Distbn of errors ε replicated under usual RE assumptions
• Sometimes even FE/rdm coeffs, e.g., Pesaran (2006)

• But no clear extension for nonlinear models, where error ε and y
are not linearly related

• Useful in several contexts, e.g.
• quantile regression and evaluation of conditional quantiles at the
tails (for example, growth at risk or welfare policy);

• computing errors distributions (for example, binary regression and
random effects models); and

• computing network externalities in discrete choice and duration
models.
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GAUSSIAN LINEAR REGRESSION MODEL

• Log-likelihood

ln L(β, σ2) = −n2 ln(2π)− n
2 ln(σ2)− 1

2σ2 (yi − x′iβ)
′
(yi − x′iβ)

= −n2 ln(2π)− n
2 ln(σ2)− 1

2σ2 ε
′
iεi

• Partial derivatives wrt y and x
∂ ln Li
∂yi

=
1
σ2

(yi − x′iβ) =
1
σ2

εi

• Neat ... but does not quite work with limited dependent y. So:
∂ ln Li
∂xi

=

(
∂ ln Li
∂x1i

∂ ln Li
∂x2i

...
∂ ln Li
∂xKi

)
=

∂ ln Li
∂yi

∂yi
∂xi

=
1
σ2

εiβ̂

⇒ εi =
σ2

β̂′β̂

[
∂ ln Li
∂xi

]′
β̂

• Evaluated at β̂, product of score fn and influence fn. – Neat
• Note: Scale is not identified – just the shape
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BINARY RESPONSE – LOGIT MODEL

• Here, there is a natural construction of residuals, because

E(yi|xi) = P(yi = 1|xi)

• Hence, LPM is applicable simply regressing binary y on x.
However, several issues

• Heteroscedasticity, plus limited dependent nature of DGP not
accounted for

• But further, distbn of latent error is identified
• Can the new “generalized residuals” capture the error distbn

• Logit likelihood is relatively easy to work with
∂ ln Li
∂xi

=
∂

∂xi
{yi ln [Λ(x′iβ)] + (1− yi) ln [1− Λ(x′iβ)]}

=
K∑
k=1

{yi − Λ(x′iβ)}βk =
K∑
k=1

{yi − Λ(y⋆i − εi)}βk,

where y⋆i is the (unobserved) latent variable and Λ(.) denotes
the cdf of the standard logistic distbn
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CODING

Looks somewhat complicated, but really simple to code ... in Stata or
otherwise

Figure 1: Prototype code

Can be parallelised
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MONTE CARLO



KL DIVERGENCE (OLS)

• Really a bit of a sense check first. All models are estimated by
OLS, so gen-res coincides with usual residuals

• Model: y = 1+ x+ u, x ∼ N(0, 1) u ∼ various
• But we evaluate the impact of theoretical scaling by variance
against our proposed standardised gen-res.

• Generalised residuals match true error distbn better in all cases
• particularly as the signal to noise ratio declines
• and error distbn deviate from Gaussian

Error Distribution
Norm1 Norm1.5 Norm2 Expo2 t(3.6)

Residuals (Scaled) 0.0176 0.0930 0.2410 0.0438 0.0175
Generalised Residuals 0.0130 0.0145 0.0133 0.0101 0.0107

Table 1: KL Divergence from True DGP by Error Distribution (Average of 20
MCs, each with n = 100)
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BEHAVIOUR OF GENERALISED RESIDUALS

Figure 2: t-dist. error model fit vs average (squared) Generalised resid.
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KL DIVERGENCE (LOGIT)

• Model: y = I(1+ x+ u > 0), x ∼ N(0, 1) as before
• Error distbn: u ∼ Logistic(0.55) or N(0, 1), both zero mean unit
variance

• Logit regression gen-res compared against Linear Probability
Model (OLS) residuals

Error Distribution
Normal Logistic

LPM Residuals (Scaled) 2.8271 1.2627
(Pearson) Residuals 0.1202 0.0772
Generalised Residuals 0.0803 0.0525

Table 2: KL Divergence from True DGP by Error Distribution (Average of all 20
MCs, each with n = 100)
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EXTENSIONS



OTHER NONLINEAR MODELS

• Extensions to other nonlinear models fairly straightforward. For
example:

• Multinomial logit, using the Random Utility Model formulation of
McFadden (1974)

• Cox (and beyond Cox) hazard regression models using Cox (1975)
partial likelihood fn instead of the full log-likelihood

• Other things to do
• More extensive error distbns
• Tail probabilities
• Network externalities
• Applications
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