

A SIMPLE APPROACH TO COMPUTE GENERALIZED RESIDUALS FOR NONLINEAR MODELS

ARNAB BHATTACHARJEE AND TIBOR SZENDREI

Presented by: Arnab Bhattacharjee September 2025

31st UK Stata Conference, London

TABLE OF CONTENTS

1. Construction of generalized residuals

2. Monte Carlo

OLS

Logistic regression

3. Extensions

RESIDUALS

CONSTRUCTION OF GENERALIZED

GENERALISED LINEAR MODELS

- Model: $y_i = f(x_i, \beta) + \varepsilon_i$
- Residuals: $y_i \hat{y}_i(\hat{\beta})$
- · Usually scale is not identified, but
 - Distbn of errors ε replicated under usual RE assumptions
 - · Sometimes even FE/rdm coeffs, e.g., Pesaran (2006)
- But no clear extension for nonlinear models, where error ε and y are not linearly related
- · Useful in several contexts, e.g.
 - quantile regression and evaluation of conditional quantiles at the tails (for example, growth at risk or welfare policy);
 - computing errors distributions (for example, binary regression and random effects models); and
 - computing network externalities in discrete choice and duration models.

GAUSSIAN LINEAR REGRESSION MODEL

· Log-likelihood

$$\ln L(\beta, \sigma^{2}) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln(\sigma^{2}) - \frac{1}{2\sigma^{2}} (y_{i} - x'_{i}\beta)' (y_{i} - x'_{i}\beta)$$
$$= -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln(\sigma^{2}) - \frac{1}{2\sigma^{2}} \varepsilon'_{i}\varepsilon_{i}$$

Partial derivatives wrt y and x

$$\frac{\partial \ln L_i}{\partial y_i} = \frac{1}{\sigma^2} (y_i - x_i' \beta) = \frac{1}{\sigma^2} \varepsilon_i$$

Neat ... but does not quite work with limited dependent y. So:

$$\frac{\partial \ln L_{i}}{\partial x_{i}} = \left(\frac{\partial \ln L_{i}}{\partial x_{1i}} \quad \frac{\partial \ln L_{i}}{\partial x_{2i}} \quad \dots \quad \frac{\partial \ln L_{i}}{\partial x_{Ki}}\right) = \frac{\partial \ln L_{i}}{\partial y_{i}} \frac{\partial y_{i}}{\partial x_{i}} = \frac{1}{\sigma^{2}} \varepsilon_{i} \hat{\beta}$$

$$\Rightarrow \varepsilon_{i} = \frac{\sigma^{2}}{\hat{\beta}' \hat{\beta}} \left[\frac{\partial \ln L_{i}}{\partial x_{i}}\right]' \hat{\beta}$$

- Evaluated at $\hat{\beta}$, product of score fn and influence fn. Neat
- · Note: Scale is not identified just the shape

BINARY RESPONSE - LOGIT MODEL

· Here, there is a natural construction of residuals, because

$$\mathbb{E}(y_i|x_i) = \mathbb{P}(y_i = 1|x_i)$$

- Hence, LPM is applicable simply regressing binary *y* on *x*. However, several issues
 - Heteroscedasticity, plus limited dependent nature of DGP not accounted for
 - · But further, distbn of latent error is identified
 - · Can the new "generalized residuals" capture the error distbn
- Logit likelihood is relatively easy to work with

$$\frac{\partial \ln L_i}{\partial x_i} = \frac{\partial}{\partial x_i} \left\{ y_i \ln \left[\Lambda(x_i'\beta) \right] + (1 - y_i) \ln \left[1 - \Lambda(x_i'\beta) \right] \right\}$$
$$= \sum_{k=1}^K \left\{ y_i - \Lambda(x_i'\beta) \right\} \beta_k = \sum_{k=1}^K \left\{ y_i - \Lambda(y_i^* - \varepsilon_i) \right\} \beta_k,$$

where y_i^* is the (unobserved) latent variable and $\Lambda(.)$ denotes the cdf of the standard logistic distbn

CODING

Looks somewhat complicated, but really simple to code ... in Stata or otherwise

Figure 1: Prototype code

Can be parallelised

MONTE CARLO

KL DIVERGENCE (OLS)

- Really a bit of a sense check first. All models are estimated by OLS, so gen-res coincides with usual residuals
- Model: y = 1 + x + u, $x \sim N(0,1)$ $u \sim$ various
- But we evaluate the impact of theoretical scaling by variance against our proposed standardised gen-res.
- · Generalised residuals match true error distbn better in all cases
 - particularly as the signal to noise ratio declines
 - · and error distbn deviate from Gaussian

	Error Distribution				
	Norm1	Norm1.5	Norm2	Expo2	t(3.6)
Residuals (Scaled)	0.0176	0.0930	0.2410	0.0438	0.0175
Generalised Residuals	0.0130	0.0145	0.0133	0.0101	0.0107

Table 1: KL Divergence from True DGP by Error Distribution (Average of 20 MCs, each with n=100)

BEHAVIOUR OF GENERALISED RESIDUALS

Figure 2: t-dist. error model fit vs average (squared) Generalised resid.

KL DIVERGENCE (LOGIT)

- Model: $y = \mathbb{I}(1 + x + u > 0)$, $x \sim N(0, 1)$ as before
- Error distbn: $u \sim \text{Logistic}(0.55)$ or N(0,1), both zero mean unit variance
- Logit regression gen-res compared against Linear Probability Model (OLS) residuals

	Error Distribution	
	Normal	Logistic
LPM Residuals (Scaled)	2.8271	1.2627
(Pearson) Residuals	0.1202	0.0772
Generalised Residuals	0.0803	0.0525

Table 2: KL Divergence from True DGP by Error Distribution (Average of all 20 MCs, each with n=100)

EXTENSIONS

OTHER NONLINEAR MODELS

- Extensions to other nonlinear models fairly straightforward. For example:
- Multinomial logit, using the Random Utility Model formulation of McFadden (1974)
- Cox (and beyond Cox) hazard regression models using Cox (1975) partial likelihood fn instead of the full log-likelihood
- Other things to do
 - · More extensive error distbns
 - · Tail probabilities
 - Network externalities
 - Applications

REFERENCES

REFERENCES I