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CONSTRUCTION OF GENERALIZED
RESIDUALS



GENERALISED LINEAR MODELS

- Model: y; = f(x, 8) + &
- Residuals: y; — §i(8)
- Usually scale is not identified, but
- Distbn of errors e replicated under usual RE assumptions
- Sometimes even FE/rdm coeffs, e.g., Pesaran (2006)
- But no clear extension for nonlinear models, where error e and y
are not linearly related
- Useful in several contexts, e.g.

- quantile regression and evaluation of conditional quantiles at the
tails (for example, growth at risk or welfare policy);

- computing errors distributions (for example, binary regression and
random effects models); and

- computing network externalities in discrete choice and duration
models.



GAUSSIAN LINEAR REGRESSION MODEL

- Log-likelihood
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- Partial derivatives wrt y and x
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- Neat ... but does not quite work with limited dependent y. So:
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- Evaluated at /3, product of score fn and influence fn. - Neat
- Note: Scale is not identified - just the shape



BINARY RESPONSE — LOGIT MODEL

- Here, there is a natural construction of residuals, because

E(yilxi) = P(y; = 1[x;)
- Hence, LPM is applicable simply regressing binary y on x.
However, several issues
- Heteroscedasticity, plus limited dependent nature of DGP not
accounted for

- But further, distbn of latent error is identified

- Can the new “generalized residuals” capture the error distbn
- Logit likelihood is relatively easy to work with

ag;iLi _ i {)/i In[AXB)] + (1—=y)In[1 = AKX B)]}

=> {yi—AXB)} B = Z{V' Vi —€i)} B

k=1
where y* is the (unobserved) latent variable and A(.) denotes
the cdf of the standard logistic distbn




CODING

Looks somewhat complicated, but really simple to code ... in Stata or
otherwise

logit y x
gen res = e(1ll)
local j =1
while “j' <= _N {
qui replace x = x+1 if id=="3j'
qui logit y x
qui replace res_"i' = (e(11l) - res_"1i')/e(b)[1,1] if id=="73'
qui replace x = x-1 if id=="3"'
qui local j = "j" +1
}

egen float genres = std(res), mean(®) sd(1)

Figure 1: Prototype code

Can be parallelised
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KL DIVERGENCE (OLS)

- Really a bit of a sense check first. All models are estimated by
OLS, so gen-res coincides with usual residuals
- Model: y=1+x+4+u, x~N(0,1) u~ various
- But we evaluate the impact of theoretical scaling by variance
against our proposed standardised gen-res.
- Generalised residuals match true error distbn better in all cases
- particularly as the signal to noise ratio declines
- and error distbn deviate from Gaussian

Error Distribution
Norml Norm15 Norm2 Expo2  t(3.6)
Residuals (Scaled) 0.0176  0.0930 0.2410 0.0438 0.0175
Generalised Residuals | 0.0130  0.0145 0.0133 0.0101 0.0107

Table 1: KL Divergence from True DGP by Error Distribution (Average of 20
MCs, each with n = 100)



BEHAVIOUR OF GENERALISED RESIDU

R-squared vs Average Squared Generalized Residuals

0.50
1

0.45

R-squared

T
156 20 25

Average Squared Generalized Residuals

Figure 2: t-dist. error model fit vs average (squared) Generalised resid.



KL DIVERGENCE (LOGIT)

- Model: y =TI(1+x+u >0), x~ N(0,1) as before

- Error distbn: u ~ Logistic(0.55) or N(0, 1), both zero mean unit
variance

- Logit regression gen-res compared against Linear Probability
Model (OLS) residuals

Error Distribution
Normal Logistic
LPM Residuals (Scaled) | 2.8271  1.2627
(Pearson) Residuals 0.1202  0.0772
Generalised Residuals | 0.0803  0.0525

Table 2: KL Divergence from True DGP by Error Distribution (Average of all 20
MCs, each with n = 100)



EXTENSIONS




OTHER NONLINEAR MODELS

- Extensions to other nonlinear models fairly straightforward. For
example:

- Multinomial logit, using the Random Utility Model formulation of
McFadden (1974)

- Cox (and beyond Cox) hazard regression models using Cox (1975)
partial likelihood fn instead of the full log-likelihood

- Other things to do

- More extensive error distbns
- Tail probabilities

- Network externalities

- Applications
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