
Resultssets to resultstables revisited

Roger B. Newson
r.newson@qmul.ac.uk

http://www.rogernewsonresources.org.uk

Cancer Prevention Group, Wolfson Institute of Population Health, Queen Mary University
London

Presented at the 2025 UK Stata Conference, London,
11–12 September, 2025

Downloadable from the conference website at
https://econpapers.repec.org/paper/boc/lsug25/

Resultssets to resultstables revisited Frame 1 of 17

mailto:r.newson@qmul.ac.uk
http://www.rogernewsonresources.org.uk
https://econpapers.repec.org/paper/boc/lsug25/

Resultssets revisited

I A resultsset is a Stata dataset created as output by a Stata
program.

I They are nowadays created in resultsframes[1], but can also be
listed, written to a file, or overwritten over the input dataset.

I Resultsset–generating SSC packages include parmest,
xcollapse, xcontract, descsave, xdir, xframedir,
and xsvmat.

I And, like other Stata datasets, resultssets can be input into
“SQL–like” operations, using append, merge, joinby, and
cross in official Stata, or the SSC packages keyby,
addinby, expgen, and xframeappend, to output
secondary resultssets.

Resultssets to resultstables revisited Frame 2 of 17

Resultssets revisited

I A resultsset is a Stata dataset created as output by a Stata
program.

I They are nowadays created in resultsframes[1], but can also be
listed, written to a file, or overwritten over the input dataset.

I Resultsset–generating SSC packages include parmest,
xcollapse, xcontract, descsave, xdir, xframedir,
and xsvmat.

I And, like other Stata datasets, resultssets can be input into
“SQL–like” operations, using append, merge, joinby, and
cross in official Stata, or the SSC packages keyby,
addinby, expgen, and xframeappend, to output
secondary resultssets.

Resultssets to resultstables revisited Frame 2 of 17

Resultssets revisited

I A resultsset is a Stata dataset created as output by a Stata
program.

I They are nowadays created in resultsframes[1], but can also be
listed, written to a file, or overwritten over the input dataset.

I Resultsset–generating SSC packages include parmest,
xcollapse, xcontract, descsave, xdir, xframedir,
and xsvmat.

I And, like other Stata datasets, resultssets can be input into
“SQL–like” operations, using append, merge, joinby, and
cross in official Stata, or the SSC packages keyby,
addinby, expgen, and xframeappend, to output
secondary resultssets.

Resultssets to resultstables revisited Frame 2 of 17

Resultssets revisited

I A resultsset is a Stata dataset created as output by a Stata
program.

I They are nowadays created in resultsframes[1], but can also be
listed, written to a file, or overwritten over the input dataset.

I Resultsset–generating SSC packages include parmest,
xcollapse, xcontract, descsave, xdir, xframedir,
and xsvmat.

I And, like other Stata datasets, resultssets can be input into
“SQL–like” operations, using append, merge, joinby, and
cross in official Stata, or the SSC packages keyby,
addinby, expgen, and xframeappend, to output
secondary resultssets.

Resultssets to resultstables revisited Frame 2 of 17

Resultssets revisited

I A resultsset is a Stata dataset created as output by a Stata
program.

I They are nowadays created in resultsframes[1], but can also be
listed, written to a file, or overwritten over the input dataset.

I Resultsset–generating SSC packages include parmest,
xcollapse, xcontract, descsave, xdir, xframedir,
and xsvmat.

I And, like other Stata datasets, resultssets can be input into
“SQL–like” operations, using append, merge, joinby, and
cross in official Stata, or the SSC packages keyby,
addinby, expgen, and xframeappend, to output
secondary resultssets.

Resultssets to resultstables revisited Frame 2 of 17

The resultsset–central dogma: datasets make resultssets make resultsplots
and/or resultstables[2]

I Statisticians make their living producing resultsplots and/or
resultstables.

I And a string variable needs to be encoded to numeric in order to
be plotted.

I And a numeric variable needs to be decoded to string in order to
be tabulated.

I Resultssets (unlike Stata tables and graphs) are therefore a
sensible common currency for results, as their variables can be
used equally to make resultsplots and/or resultstables. encoding
and/or decoding when necessary.

I SSC packages used include sencode[3], factext, and
fvregen for encoding, and sdecode and its family of
dependents bmjcip, factmerg, ingap, and insingap for
decoding.

Resultssets to resultstables revisited Frame 3 of 17

The resultsset–central dogma: datasets make resultssets make resultsplots
and/or resultstables[2]

I Statisticians make their living producing resultsplots and/or
resultstables.

I And a string variable needs to be encoded to numeric in order to
be plotted.

I And a numeric variable needs to be decoded to string in order to
be tabulated.

I Resultssets (unlike Stata tables and graphs) are therefore a
sensible common currency for results, as their variables can be
used equally to make resultsplots and/or resultstables. encoding
and/or decoding when necessary.

I SSC packages used include sencode[3], factext, and
fvregen for encoding, and sdecode and its family of
dependents bmjcip, factmerg, ingap, and insingap for
decoding.

Resultssets to resultstables revisited Frame 3 of 17

The resultsset–central dogma: datasets make resultssets make resultsplots
and/or resultstables[2]

I Statisticians make their living producing resultsplots and/or
resultstables.

I And a string variable needs to be encoded to numeric in order to
be plotted.

I And a numeric variable needs to be decoded to string in order to
be tabulated.

I Resultssets (unlike Stata tables and graphs) are therefore a
sensible common currency for results, as their variables can be
used equally to make resultsplots and/or resultstables. encoding
and/or decoding when necessary.

I SSC packages used include sencode[3], factext, and
fvregen for encoding, and sdecode and its family of
dependents bmjcip, factmerg, ingap, and insingap for
decoding.

Resultssets to resultstables revisited Frame 3 of 17

The resultsset–central dogma: datasets make resultssets make resultsplots
and/or resultstables[2]

I Statisticians make their living producing resultsplots and/or
resultstables.

I And a string variable needs to be encoded to numeric in order to
be plotted.

I And a numeric variable needs to be decoded to string in order to
be tabulated.

I Resultssets (unlike Stata tables and graphs) are therefore a
sensible common currency for results, as their variables can be
used equally to make resultsplots and/or resultstables. encoding
and/or decoding when necessary.

I SSC packages used include sencode[3], factext, and
fvregen for encoding, and sdecode and its family of
dependents bmjcip, factmerg, ingap, and insingap for
decoding.

Resultssets to resultstables revisited Frame 3 of 17

The resultsset–central dogma: datasets make resultssets make resultsplots
and/or resultstables[2]

I Statisticians make their living producing resultsplots and/or
resultstables.

I And a string variable needs to be encoded to numeric in order to
be plotted.

I And a numeric variable needs to be decoded to string in order to
be tabulated.

I Resultssets (unlike Stata tables and graphs) are therefore a
sensible common currency for results, as their variables can be
used equally to make resultsplots and/or resultstables. encoding
and/or decoding when necessary.

I SSC packages used include sencode[3], factext, and
fvregen for encoding, and sdecode and its family of
dependents bmjcip, factmerg, ingap, and insingap for
decoding.

Resultssets to resultstables revisited Frame 3 of 17

The resultsset–central dogma: datasets make resultssets make resultsplots
and/or resultstables[2]

I Statisticians make their living producing resultsplots and/or
resultstables.

I And a string variable needs to be encoded to numeric in order to
be plotted.

I And a numeric variable needs to be decoded to string in order to
be tabulated.

I Resultssets (unlike Stata tables and graphs) are therefore a
sensible common currency for results, as their variables can be
used equally to make resultsplots and/or resultstables. encoding
and/or decoding when necessary.

I SSC packages used include sencode[3], factext, and
fvregen for encoding, and sdecode and its family of
dependents bmjcip, factmerg, ingap, and insingap for
decoding.

Resultssets to resultstables revisited Frame 3 of 17

Example in example1.do: Statistics for quantitative variables by US
origin in the xauto data

I The SSC package xauto creates an extended version of the
auto data supplied with official Stata.

I We will use it to generate a secondary xcollapse resultsset,
containing statistics on the list of 10 quantitative variables
price npm rep78 trunk headroom tons length
turn displacement gear_ratio, broken down by
origin of car model (US or non–US).

I We then convert the resultsset to a multi–page resultstable in a
.docx document example1.docx.

Resultssets to resultstables revisited Frame 4 of 17

Example in example1.do: Statistics for quantitative variables by US
origin in the xauto data

I The SSC package xauto creates an extended version of the
auto data supplied with official Stata.

I We will use it to generate a secondary xcollapse resultsset,
containing statistics on the list of 10 quantitative variables
price npm rep78 trunk headroom tons length
turn displacement gear_ratio, broken down by
origin of car model (US or non–US).

I We then convert the resultsset to a multi–page resultstable in a
.docx document example1.docx.

Resultssets to resultstables revisited Frame 4 of 17

Example in example1.do: Statistics for quantitative variables by US
origin in the xauto data

I The SSC package xauto creates an extended version of the
auto data supplied with official Stata.

I We will use it to generate a secondary xcollapse resultsset,
containing statistics on the list of 10 quantitative variables
price npm rep78 trunk headroom tons length
turn displacement gear_ratio, broken down by
origin of car model (US or non–US).

I We then convert the resultsset to a multi–page resultstable in a
.docx document example1.docx.

Resultssets to resultstables revisited Frame 4 of 17

Example in example1.do: Statistics for quantitative variables by US
origin in the xauto data

I The SSC package xauto creates an extended version of the
auto data supplied with official Stata.

I We will use it to generate a secondary xcollapse resultsset,
containing statistics on the list of 10 quantitative variables
price npm rep78 trunk headroom tons length
turn displacement gear_ratio, broken down by
origin of car model (US or non–US).

I We then convert the resultsset to a multi–page resultstable in a
.docx document example1.docx.

Resultssets to resultstables revisited Frame 4 of 17

The secondary resultsset to be converted
This was created by xframeappending 10 xcollapse
resultsframes, one for each quantitative variable. We then sencoded
the string ID variable idstr to create the variable quanvar:
. desc, fu;

Contains data
Observations: 20

Variables: 10

Variable Storage Display Value

name type format label Variable label

quanvar byte %-34.0g quanvar Quantitative variable
us byte %-8.0g us US or non-US model
N byte %8.0g (count) X
mean float %8.2f (mean) X
sd float %8.2f (sd) X
p0 float %8.2f (min) X
p25 float %8.2f (p 25) X
p50 float %8.2f (p 50) X
p75 float %8.2f (p 75) X
p100 float %8.2f (max) X

Sorted by: quanvar us

Note: Dataset has changed since last saved.

We see that the dataset has 1 observation per quantitative variable per
car model origin group (non–US or US), and data on statistics.

Resultssets to resultstables revisited Frame 5 of 17

A resultsplot from our resultsset

I This plot was produced
from our resultsset, using
the SSC packages
sdecode, sencode,
and eclplot.

I And there are many other
things we can do with
resultssets!

I However, today we
concentrate on
multi–page tables in
.docx documents,
which clinical trial
committees like.

Non-US models (N=22)

US models (N=52)

U
S

or
 n

on
-U

S
m

od
el

5 10 15 20 25

Median (with IQR and range) for:
Fuel consumption (nipperkins/mile)

Resultssets to resultstables revisited Frame 6 of 17

A resultsplot from our resultsset

I This plot was produced
from our resultsset, using
the SSC packages
sdecode, sencode,
and eclplot.

I And there are many other
things we can do with
resultssets!

I However, today we
concentrate on
multi–page tables in
.docx documents,
which clinical trial
committees like.

Non-US models (N=22)

US models (N=52)

U
S

or
 n

on
-U

S
m

od
el

5 10 15 20 25

Median (with IQR and range) for:
Fuel consumption (nipperkins/mile)

Resultssets to resultstables revisited Frame 6 of 17

A resultsplot from our resultsset

I This plot was produced
from our resultsset, using
the SSC packages
sdecode, sencode,
and eclplot.

I And there are many other
things we can do with
resultssets!

I However, today we
concentrate on
multi–page tables in
.docx documents,
which clinical trial
committees like.

Non-US models (N=22)

US models (N=52)

U
S

or
 n

on
-U

S
m

od
el

5 10 15 20 25

Median (with IQR and range) for:
Fuel consumption (nipperkins/mile)

Resultssets to resultstables revisited Frame 6 of 17

A resultsplot from our resultsset

I This plot was produced
from our resultsset, using
the SSC packages
sdecode, sencode,
and eclplot.

I And there are many other
things we can do with
resultssets!

I However, today we
concentrate on
multi–page tables in
.docx documents,
which clinical trial
committees like.

Non-US models (N=22)

US models (N=52)

U
S

or
 n

on
-U

S
m

od
el

5 10 15 20 25

Median (with IQR and range) for:
Fuel consumption (nipperkins/mile)

Resultssets to resultstables revisited Frame 6 of 17

Resultssets to resultstables: decoding, listing and other steps
I Converting resultssets to resultstables has previously been

discussed in Newson (2012)[4] and Newson (2023)[5].
I The process usually starts with decoding, using the sdecode

family of SSC packages.
I And it always ends with listing, using the SSC packages

docxtab (for tables in .docx documents) or listtab (for
tables in Markdown, HTML, LATEX, plain TEX, or .rtf
documents).

I However, there may be other steps between decoding and listing,
involving reshapeing (long or wide), appending, merging,
characterizing (to define table–column headers), inserting gap
observations, and/or grouping rows into pages in multi–page
tables.

I These steps convert a resultsset (with a primary key and 1
observation per result) to a dataset ready for listing (with a
primary key and 1 observation per table row).

Resultssets to resultstables revisited Frame 7 of 17

Resultssets to resultstables: decoding, listing and other steps
I Converting resultssets to resultstables has previously been

discussed in Newson (2012)[4] and Newson (2023)[5].
I The process usually starts with decoding, using the sdecode

family of SSC packages.
I And it always ends with listing, using the SSC packages

docxtab (for tables in .docx documents) or listtab (for
tables in Markdown, HTML, LATEX, plain TEX, or .rtf
documents).

I However, there may be other steps between decoding and listing,
involving reshapeing (long or wide), appending, merging,
characterizing (to define table–column headers), inserting gap
observations, and/or grouping rows into pages in multi–page
tables.

I These steps convert a resultsset (with a primary key and 1
observation per result) to a dataset ready for listing (with a
primary key and 1 observation per table row).

Resultssets to resultstables revisited Frame 7 of 17

Resultssets to resultstables: decoding, listing and other steps
I Converting resultssets to resultstables has previously been

discussed in Newson (2012)[4] and Newson (2023)[5].
I The process usually starts with decoding, using the sdecode

family of SSC packages.
I And it always ends with listing, using the SSC packages

docxtab (for tables in .docx documents) or listtab (for
tables in Markdown, HTML, LATEX, plain TEX, or .rtf
documents).

I However, there may be other steps between decoding and listing,
involving reshapeing (long or wide), appending, merging,
characterizing (to define table–column headers), inserting gap
observations, and/or grouping rows into pages in multi–page
tables.

I These steps convert a resultsset (with a primary key and 1
observation per result) to a dataset ready for listing (with a
primary key and 1 observation per table row).

Resultssets to resultstables revisited Frame 7 of 17

Resultssets to resultstables: decoding, listing and other steps
I Converting resultssets to resultstables has previously been

discussed in Newson (2012)[4] and Newson (2023)[5].
I The process usually starts with decoding, using the sdecode

family of SSC packages.
I And it always ends with listing, using the SSC packages

docxtab (for tables in .docx documents) or listtab (for
tables in Markdown, HTML, LATEX, plain TEX, or .rtf
documents).

I However, there may be other steps between decoding and listing,
involving reshapeing (long or wide), appending, merging,
characterizing (to define table–column headers), inserting gap
observations, and/or grouping rows into pages in multi–page
tables.

I These steps convert a resultsset (with a primary key and 1
observation per result) to a dataset ready for listing (with a
primary key and 1 observation per table row).

Resultssets to resultstables revisited Frame 7 of 17

Resultssets to resultstables: decoding, listing and other steps
I Converting resultssets to resultstables has previously been

discussed in Newson (2012)[4] and Newson (2023)[5].
I The process usually starts with decoding, using the sdecode

family of SSC packages.
I And it always ends with listing, using the SSC packages

docxtab (for tables in .docx documents) or listtab (for
tables in Markdown, HTML, LATEX, plain TEX, or .rtf
documents).

I However, there may be other steps between decoding and listing,
involving reshapeing (long or wide), appending, merging,
characterizing (to define table–column headers), inserting gap
observations, and/or grouping rows into pages in multi–page
tables.

I These steps convert a resultsset (with a primary key and 1
observation per result) to a dataset ready for listing (with a
primary key and 1 observation per table row).

Resultssets to resultstables revisited Frame 7 of 17

Resultssets to resultstables: decoding, listing and other steps
I Converting resultssets to resultstables has previously been

discussed in Newson (2012)[4] and Newson (2023)[5].
I The process usually starts with decoding, using the sdecode

family of SSC packages.
I And it always ends with listing, using the SSC packages

docxtab (for tables in .docx documents) or listtab (for
tables in Markdown, HTML, LATEX, plain TEX, or .rtf
documents).

I However, there may be other steps between decoding and listing,
involving reshapeing (long or wide), appending, merging,
characterizing (to define table–column headers), inserting gap
observations, and/or grouping rows into pages in multi–page
tables.

I These steps convert a resultsset (with a primary key and 1
observation per result) to a dataset ready for listing (with a
primary key and 1 observation per table row).

Resultssets to resultstables revisited Frame 7 of 17

Steps in converting a resultsset to a resultstable
These 11 steps are given in the order in which they usually happen.
There are SSC modules for each step.

Step type SSC modules used Importance
Decode non–key variables to table cells sdecode and dependents Semi–compulsory
Reshape to long xrelong Optional
Append extra table rows xframeappend, factmerg Optional
Characterize table columns chardef, xrewide Optional
Reshape to wide xrewide Optional
Merge in extra table columns addinby, fraddinby Optional
Decode key variables to table row label sdecode and dependents Semi–compulsory
Characterize table row label chardef Optional
Insert gap observations insingap, ingap Optional
Group observations into pages ltop Optional
List table listtab, docxtab Compulsory

The “Compulsory” step (listing) is always necessary. The 2
“Semi–compulsory” steps (decoding) are nearly always necessary.
The “Optional” steps are frequently absent (because, fortunately, most
tables are simple). To find out more about the SSC modules, use
findit in Stata.

Resultssets to resultstables revisited Frame 8 of 17

Example: Decode and reshape to long
I We start making our resultstable by decoding our statistics

variables.
I This is done using the msdecode module of the sdecode

package, which can input multiple numeric statistics variables to
output a string variable displaying a decoded “vector–statistic”,
like a variable range in parentheses.

I This creates new string variables stat1, stat2, stat3, and
stat4, displaying, respectively, the sample number, the mean
(with SD), the median (with IQR), and the range.

I We then use the module xrelong, an extension of reshape
long, which creates a long version of our resultsset, with an
extra labelled key variable statseq and a single displayed
statistic value variable stat.

I This gives us a dataset with 1 observation per quantitative
variable per car–origin group per displayed statistic, and data on
the values of those statistics.

Resultssets to resultstables revisited Frame 9 of 17

Example: Decode and reshape to long
I We start making our resultstable by decoding our statistics

variables.
I This is done using the msdecode module of the sdecode

package, which can input multiple numeric statistics variables to
output a string variable displaying a decoded “vector–statistic”,
like a variable range in parentheses.

I This creates new string variables stat1, stat2, stat3, and
stat4, displaying, respectively, the sample number, the mean
(with SD), the median (with IQR), and the range.

I We then use the module xrelong, an extension of reshape
long, which creates a long version of our resultsset, with an
extra labelled key variable statseq and a single displayed
statistic value variable stat.

I This gives us a dataset with 1 observation per quantitative
variable per car–origin group per displayed statistic, and data on
the values of those statistics.

Resultssets to resultstables revisited Frame 9 of 17

Example: Decode and reshape to long
I We start making our resultstable by decoding our statistics

variables.
I This is done using the msdecode module of the sdecode

package, which can input multiple numeric statistics variables to
output a string variable displaying a decoded “vector–statistic”,
like a variable range in parentheses.

I This creates new string variables stat1, stat2, stat3, and
stat4, displaying, respectively, the sample number, the mean
(with SD), the median (with IQR), and the range.

I We then use the module xrelong, an extension of reshape
long, which creates a long version of our resultsset, with an
extra labelled key variable statseq and a single displayed
statistic value variable stat.

I This gives us a dataset with 1 observation per quantitative
variable per car–origin group per displayed statistic, and data on
the values of those statistics.

Resultssets to resultstables revisited Frame 9 of 17

Example: Decode and reshape to long
I We start making our resultstable by decoding our statistics

variables.
I This is done using the msdecode module of the sdecode

package, which can input multiple numeric statistics variables to
output a string variable displaying a decoded “vector–statistic”,
like a variable range in parentheses.

I This creates new string variables stat1, stat2, stat3, and
stat4, displaying, respectively, the sample number, the mean
(with SD), the median (with IQR), and the range.

I We then use the module xrelong, an extension of reshape
long, which creates a long version of our resultsset, with an
extra labelled key variable statseq and a single displayed
statistic value variable stat.

I This gives us a dataset with 1 observation per quantitative
variable per car–origin group per displayed statistic, and data on
the values of those statistics.

Resultssets to resultstables revisited Frame 9 of 17

Example: Decode and reshape to long
I We start making our resultstable by decoding our statistics

variables.
I This is done using the msdecode module of the sdecode

package, which can input multiple numeric statistics variables to
output a string variable displaying a decoded “vector–statistic”,
like a variable range in parentheses.

I This creates new string variables stat1, stat2, stat3, and
stat4, displaying, respectively, the sample number, the mean
(with SD), the median (with IQR), and the range.

I We then use the module xrelong, an extension of reshape
long, which creates a long version of our resultsset, with an
extra labelled key variable statseq and a single displayed
statistic value variable stat.

I This gives us a dataset with 1 observation per quantitative
variable per car–origin group per displayed statistic, and data on
the values of those statistics.

Resultssets to resultstables revisited Frame 9 of 17

Example: Decode and reshape to long
I We start making our resultstable by decoding our statistics

variables.
I This is done using the msdecode module of the sdecode

package, which can input multiple numeric statistics variables to
output a string variable displaying a decoded “vector–statistic”,
like a variable range in parentheses.

I This creates new string variables stat1, stat2, stat3, and
stat4, displaying, respectively, the sample number, the mean
(with SD), the median (with IQR), and the range.

I We then use the module xrelong, an extension of reshape
long, which creates a long version of our resultsset, with an
extra labelled key variable statseq and a single displayed
statistic value variable stat.

I This gives us a dataset with 1 observation per quantitative
variable per car–origin group per displayed statistic, and data on
the values of those statistics.

Resultssets to resultstables revisited Frame 9 of 17

The code for decoding and reshaping to long
The code to do this was as follows:

msdecode N, gene(stat1);
msdecode mean sd, delim(" (") suff(")") gene(stat2);
msdecode p50 p25 p75, delim(" (" ", ") suff(")")

gene(stat3);
msdecode p0 p100, pref("(") delim(", ") suff(")")

gene(stat4);
lab def statseq 1 "N" 2 "Mean (SD)" 3 "Median (IQR)"

4 "Range";
drop N mean sd p*;
xrelong stat, i(quanvar us) j(statseq) jlabel(statseq);
jformat statseq stat;
lab var statseq "Statistic sequence";
lab var stat "Statistic value";
desc, fu;

We start by using msdecode to decode our 8 numeric statistics to 4 string
variables, drop the numeric variables, and use xrelong, with the option
jlabel(statseq), to reshape the dataset to long (with labelled
j–values). The SSC package jformat left–justifies the new variables.

Resultssets to resultstables revisited Frame 10 of 17

The resultssetset decoded and reshaped to long
We listed the new long dataset:
. by quanvar: list us statseq stat, abbr(32) sepby(quanvar us);

-> quanvar = Price

+--+
us statseq stat

1. | Non-US N 22 |
2. | Non-US Mean (SD) 6384.68 (2621.92) |
3. | Non-US Median (IQR) 5759.00 (4499.00, 7140.00) |
4. | Non-US Range (3748.00, 12990.00) |

|--|
5. | US N 52 |
6. | US Mean (SD) 6072.42 (3097.10) |
7. | US Median (IQR) 4782.50 (4184.00, 6234.00) |
8. | US Range (3291.00, 15906.00) |

+--+

-> quanvar = Fuel consumption (nipperkins/mile)

+--+
us statseq stat

1. | Non-US N 22 |
2. | Non-US Mean (SD) 11.04 (2.93) |
3. | Non-US Median (IQR) 10.45 (9.14, 12.19) |
4. | Non-US Range (6.24, 18.29) |

The long format allows dissimilar vector–statistics to be stacked.
Resultssets to resultstables revisited Frame 11 of 17

Example: Reshaping to wide and adding gap rows

I We continued by using xrewide (an extension of reshape
wide), with the options i(quanvar statseq) j(us)
cjlabel(varname), to create a dataset with 1 observation
per quantitative variable per output vector–statistic, and data on
that statistic in non–US and US models (side by side).

I We then created a string row label variable rowlabel by
sdecodeing statseq.

I We then inserted gap observations using insingap, adding a
gap observation at the start of each quantitative variable.

I This creates a dataset with 5 observations per quantitative
variable, the first a gap observation and the other 4 containing
data on the 4 vector–statistics in non–US and US models.

Resultssets to resultstables revisited Frame 12 of 17

Example: Reshaping to wide and adding gap rows

I We continued by using xrewide (an extension of reshape
wide), with the options i(quanvar statseq) j(us)
cjlabel(varname), to create a dataset with 1 observation
per quantitative variable per output vector–statistic, and data on
that statistic in non–US and US models (side by side).

I We then created a string row label variable rowlabel by
sdecodeing statseq.

I We then inserted gap observations using insingap, adding a
gap observation at the start of each quantitative variable.

I This creates a dataset with 5 observations per quantitative
variable, the first a gap observation and the other 4 containing
data on the 4 vector–statistics in non–US and US models.

Resultssets to resultstables revisited Frame 12 of 17

Example: Reshaping to wide and adding gap rows

I We continued by using xrewide (an extension of reshape
wide), with the options i(quanvar statseq) j(us)
cjlabel(varname), to create a dataset with 1 observation
per quantitative variable per output vector–statistic, and data on
that statistic in non–US and US models (side by side).

I We then created a string row label variable rowlabel by
sdecodeing statseq.

I We then inserted gap observations using insingap, adding a
gap observation at the start of each quantitative variable.

I This creates a dataset with 5 observations per quantitative
variable, the first a gap observation and the other 4 containing
data on the 4 vector–statistics in non–US and US models.

Resultssets to resultstables revisited Frame 12 of 17

Example: Reshaping to wide and adding gap rows

I We continued by using xrewide (an extension of reshape
wide), with the options i(quanvar statseq) j(us)
cjlabel(varname), to create a dataset with 1 observation
per quantitative variable per output vector–statistic, and data on
that statistic in non–US and US models (side by side).

I We then created a string row label variable rowlabel by
sdecodeing statseq.

I We then inserted gap observations using insingap, adding a
gap observation at the start of each quantitative variable.

I This creates a dataset with 5 observations per quantitative
variable, the first a gap observation and the other 4 containing
data on the 4 vector–statistics in non–US and US models.

Resultssets to resultstables revisited Frame 12 of 17

Example: Reshaping to wide and adding gap rows

I We continued by using xrewide (an extension of reshape
wide), with the options i(quanvar statseq) j(us)
cjlabel(varname), to create a dataset with 1 observation
per quantitative variable per output vector–statistic, and data on
that statistic in non–US and US models (side by side).

I We then created a string row label variable rowlabel by
sdecodeing statseq.

I We then inserted gap observations using insingap, adding a
gap observation at the start of each quantitative variable.

I This creates a dataset with 5 observations per quantitative
variable, the first a gap observation and the other 4 containing
data on the 4 vector–statistics in non–US and US models.

Resultssets to resultstables revisited Frame 12 of 17

The dataset reshaped to wide with added gap rows

The new dataset, when listed, started like this:
. list rowlabel stat0 stat1, abbr(32) subvar sepby(quanvar) clean noobs;

Quantitative variable Non-US US
Price:

N 22 52
Mean (SD) 6384.68 (2621.92) 6072.42 (3097.10)

Median (IQR) 5759.00 (4499.00, 7140.00) 4782.50 (4184.00, 6234.00)
Range (3748.00, 12990.00) (3291.00, 15906.00)

Fuel consumption (nipperkins/mile):
N 22 52

Mean (SD) 11.04 (2.93) 13.61 (3.13)
Median (IQR) 10.45 (9.14, 12.19) 13.47 (11.64, 15.53)

Range (6.24, 18.29) (7.53, 21.33)
Repair record 1978:

N 21 48
Mean (SD) 4.29 (0.72) 3.02 (0.84)

Median (IQR) 4.00 (4.00, 5.00) 3.00 (3.00, 3.00)
Range (3.00, 5.00) (1.00, 5.00)

Trunk space (cu. ft.):
N 22 52

Mean (SD) 11.41 (3.22) 14.75 (4.31)
Median (IQR) 11.00 (9.00, 14.00) 16.00 (11.00, 17.00)

Range (5.00, 16.00) (7.00, 23.00)

This looks a bit more like a resultstable! However. . .

Resultssets to resultstables revisited Frame 13 of 17

Grouping table rows into pages using ltop

I . . . there are 5 observations (including gap observations) for each
of 10 quantitative variables. These 50 rows might be too many
for one page of our A4 .docx output!

I Fortunately, the SSC package ltop (“lines to pages”) creates a
page sequence variable, grouping table rows into pages.

I ltop has an option maxlperp(#), specifying the maximum
lines per page.

I It has an option iby(varlist), specifying internal by–groups
that must not be split between pages.

I And it can have a weight expression, specifying that some
table rows might be taller than others.

Resultssets to resultstables revisited Frame 14 of 17

Grouping table rows into pages using ltop

I . . . there are 5 observations (including gap observations) for each
of 10 quantitative variables. These 50 rows might be too many
for one page of our A4 .docx output!

I Fortunately, the SSC package ltop (“lines to pages”) creates a
page sequence variable, grouping table rows into pages.

I ltop has an option maxlperp(#), specifying the maximum
lines per page.

I It has an option iby(varlist), specifying internal by–groups
that must not be split between pages.

I And it can have a weight expression, specifying that some
table rows might be taller than others.

Resultssets to resultstables revisited Frame 14 of 17

Grouping table rows into pages using ltop

I . . . there are 5 observations (including gap observations) for each
of 10 quantitative variables. These 50 rows might be too many
for one page of our A4 .docx output!

I Fortunately, the SSC package ltop (“lines to pages”) creates a
page sequence variable, grouping table rows into pages.

I ltop has an option maxlperp(#), specifying the maximum
lines per page.

I It has an option iby(varlist), specifying internal by–groups
that must not be split between pages.

I And it can have a weight expression, specifying that some
table rows might be taller than others.

Resultssets to resultstables revisited Frame 14 of 17

Grouping table rows into pages using ltop

I . . . there are 5 observations (including gap observations) for each
of 10 quantitative variables. These 50 rows might be too many
for one page of our A4 .docx output!

I Fortunately, the SSC package ltop (“lines to pages”) creates a
page sequence variable, grouping table rows into pages.

I ltop has an option maxlperp(#), specifying the maximum
lines per page.

I It has an option iby(varlist), specifying internal by–groups
that must not be split between pages.

I And it can have a weight expression, specifying that some
table rows might be taller than others.

Resultssets to resultstables revisited Frame 14 of 17

Grouping table rows into pages using ltop

I . . . there are 5 observations (including gap observations) for each
of 10 quantitative variables. These 50 rows might be too many
for one page of our A4 .docx output!

I Fortunately, the SSC package ltop (“lines to pages”) creates a
page sequence variable, grouping table rows into pages.

I ltop has an option maxlperp(#), specifying the maximum
lines per page.

I It has an option iby(varlist), specifying internal by–groups
that must not be split between pages.

I And it can have a weight expression, specifying that some
table rows might be taller than others.

Resultssets to resultstables revisited Frame 14 of 17

Grouping table rows into pages using ltop

I . . . there are 5 observations (including gap observations) for each
of 10 quantitative variables. These 50 rows might be too many
for one page of our A4 .docx output!

I Fortunately, the SSC package ltop (“lines to pages”) creates a
page sequence variable, grouping table rows into pages.

I ltop has an option maxlperp(#), specifying the maximum
lines per page.

I It has an option iby(varlist), specifying internal by–groups
that must not be split between pages.

I And it can have a weight expression, specifying that some
table rows might be taller than others.

Resultssets to resultstables revisited Frame 14 of 17

Example: Grouping rows into pages
We use ltop to create a new page sequence variable pageseq, with
maximum lines per page set by maxlperp(40), inner by–groups
corresponding to values of quanvar, and weights equal to gapobs+1,
where gapobs is a binary indicator that an observation is a gap row. We
then use xcontract to display numbers of rows on each page:

. ltop pageseq [weight=gapobs+1], iby(quanvar)
> maxlperp(40);
(frequency weights assumed)

. xcontract pageseq, list(, abbr(32));

+----------------------------+
pageseq _freq _percent

1. | 1 30 60.00 |
2. | 2 20 40.00 |

+----------------------------+

We see that 30 table rows are on Page 1 and that 20 are on Page 2. Note that
the weights allow a gap row to be twice as tall as other rows.

Resultssets to resultstables revisited Frame 15 of 17

Making the final .docx document

I We now have a dataset with 1 observation per table row, with the
rows grouped into pages.

I So, we can now write a document–generating section to write
that dataset to a document example1.docx, looping over
pages and creating a multi–page “Table XYZ”.

I We can now have a look at our new document.

Resultssets to resultstables revisited Frame 16 of 17

Making the final .docx document

I We now have a dataset with 1 observation per table row, with the
rows grouped into pages.

I So, we can now write a document–generating section to write
that dataset to a document example1.docx, looping over
pages and creating a multi–page “Table XYZ”.

I We can now have a look at our new document.

Resultssets to resultstables revisited Frame 16 of 17

Making the final .docx document

I We now have a dataset with 1 observation per table row, with the
rows grouped into pages.

I So, we can now write a document–generating section to write
that dataset to a document example1.docx, looping over
pages and creating a multi–page “Table XYZ”.

I We can now have a look at our new document.

Resultssets to resultstables revisited Frame 16 of 17

Making the final .docx document

I We now have a dataset with 1 observation per table row, with the
rows grouped into pages.

I So, we can now write a document–generating section to write
that dataset to a document example1.docx, looping over
pages and creating a multi–page “Table XYZ”.

I We can now have a look at our new document.

Resultssets to resultstables revisited Frame 16 of 17

References

[1] Newson, R. B. Resultssets in resultsframes in Stata 16–plus. Presented at the 2022
London Stata Conference, 8–9 September, 2022. . Downloadable from
http://ideas.repec.org/p/boc/lsug22/01.html

[2] Newson, R. Resultssets, resultsspreadsheets, and resultsplots in Stata. Presented at the
2006 German Stata User Meeting, 31 March, 2006. . Downloadable from
http://ideas.repec.org/p/boc/dsug06/01.html

[3] Newson, R. B. Creating factor variables in resultssets and other datasets. Presented at the
19th UK Stata User Meeting, 12–13 September, 2013. Downloadable fron
https://ideas.repec.org/p/boc/usug13/01.html

[4] Newson, R. B. 2012. From resultssets to resultstables in Stata. The Stata Journal 12(2):
191–213. Downloadable from
https://journals.sagepub.com/doi/pdf/10.1177/1536867X1201200203

[5] Newson, R. B. Customized Markdown and .docx tables using listtab and
docxtab. Presented at the 2023 London Stata Conference, 7–8 September, 2023.
Downloadable from https://econpapers.repec.org/paper/boclsug23/01.htm

The presentation, and the example do–file, can be downloaded from
the conference website. The packages can be downloaded from SSC.

Resultssets to resultstables revisited Frame 17 of 17

http://ideas.repec.org/p/boc/lsug22/01.html
http://ideas.repec.org/p/boc/dsug06/01.html
https://ideas.repec.org/p/boc/usug13/01.html
https://journals.sagepub.com/doi/pdf/10.1177/1536867X1201200203
https://econpapers.repec.org/paper/boclsug23/01.htm

	Title
	Introduction
	Example using the xauto data
	Resultssets to resultstables
	Example: Decode and reshape to long
	Reshaping to wide and adding gap rows
	Grouping table rows into pagws using ltop
	Making the final .docx document
	References

